10.設(shè)$f(x)={\{\;}_{{log}_{3}({x}^{2}-1),x≥2.}^{{2}^{x-1},x<2,}$,則f(f(2))的值為(  )
A.0B.1C.2D.3

分析 求出對應(yīng)的函數(shù)的自變量的值,再代入函數(shù)解析式求解.

解答 解:∵$f(x)={\{\;}_{{log}_{3}({x}^{2}-1),x≥2.}^{{2}^{x-1},x<2,}$,
∴f(2)=1,
∴f(f(2))=f(1)=21-1=1.
故選:B.

點(diǎn)評 本題主要考查了對數(shù)的運(yùn)算和求函數(shù)的值,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“對任意實(shí)數(shù)x∈[-1,2],關(guān)于x的不等式x2-a≤0恒成立”為真命題的一個(gè)充分不必要條件是( 。
A.a≥4B.a>4C.a>3D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是定義在R上的奇函數(shù)恒滿足,且對任意實(shí)數(shù)x恒滿足f(x+2)=-f(x) 當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4],求f(x)的解析式;
(3)計(jì)算${∫}_{0}^{4}$f(x)dx 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,△ABC中,D為AC的中點(diǎn),AB=2,BC=$\sqrt{7}$,∠A=$\frac{π}{3}$.
(1)求cos∠ABC的值;
(2)求BD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={-1,2},B={x|mx=1},且A∪B=A,則m的值為0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知球O是棱長為1的正方體ABCD-A1B1C1D1的內(nèi)切球,則以B1為頂點(diǎn),以平面ACD1被球O所截得的圓為底面的圓錐的全面積為$\frac{2π}{3}$.(圓錐全面積S=πr(l+r),其中r為圓錐的底面半徑,l為母線長)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.經(jīng)過點(diǎn)M(2$\sqrt{6}$,-2$\sqrt{6}$)且與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$有共同漸近線的雙曲線方程為( 。
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若命題p:x∈(A∩B),則命題“?p”是x∉(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)y=f(x)對任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy,f(1)=1
(Ⅰ)分別求f(2),f(3),f(4)的值;
(Ⅱ)猜想f(n)(n∈N*)的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案