在△ABC中,BC=5,B=120°,AB=3,則△ABC的周長等于( 。
分析:由BC=a,AB=c的長,以及sinB的值,利用余弦定理求出b的值,即可確定出周長.
解答:解:∵在△ABC中,BC=a=5,B=120°,AB=c=3,
∴由余弦定理得:AC2=b2=a2+c2-2ac•cosB=25+9+15=49,
解得:AC=b=7,
則△ABC的周長為a+b+c=5+3+7=15.
故選D
點評:此題考查了余弦定理,熟練掌握余弦定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,則以A,B為焦點且過點C的雙曲線的離心率為( 。
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
,
BA
BC
=3
|
BC
|=2
,則△ABC的面積是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,BC=1,∠B=2∠A,則
AC
cosA
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,BC=6,BC邊上的高為2,則
AB
AC
的最小值為
-5
-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石景山區(qū)二模)在△ABC中,BC=2,AC=
7
B=
π
3
,則AB=
3
3
;△ABC的面積是
3
3
2
3
3
2

查看答案和解析>>

同步練習冊答案