已知cos(
π
2
+α)=-
2
3
,則cos2α=
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導公式化簡已知條件,利用二倍角的余弦函數(shù)求解即可.
解答: 解:cos(
π
2
+α)=-
2
3
,∴sinα=
2
3

cos2α=1-2sin2α=1-2×(
2
3
)
2
=
1
9

故答案為:
1
9
點評:本題考查誘導公式以及二倍角的三角函數(shù),三角函數(shù)的化簡求值,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為F1和F2且|F1F2|=2,點P(1,
3
2
)在該橢圓上.(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線l與橢圓C相交于A,B兩點,若△A F2B的面積為
12
7
7
,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且點(a,b)在過點(0,2),(1,0)的直線上,求S=2
ab
-(4a2+b2)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x||x-1|≤
1
2
,x∈R},Q={x|x∈N},則P∩Q等于(  )
A、[0,1]B、{0,1}
C、{1}D、{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

tan
6
等于(  )
A、-1
B、-
3
3
C、
2
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集U=R,集合P={x|-2≤x≤2},M={x|x2-2x-3≤0},則(∁UP)∩M等于( 。
A、{x|-2≤x≤2}
B、{x|2<x≤3}
C、{x|2≤x≤3}
D、{x|-1<x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的頂點O作互相垂直的兩弦OM,ON,則M的橫坐標x1與N的橫坐標x2之積為( 。
A、64B、32C、16D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科做)如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)設(shè)BE=x,問當x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.
(2)當BE=1,是否在折疊后的AD上存在一點P,使得CP∥平面ABEF?若存在,求出AP的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC=3,BC=2,∠ABC的平分線交BC的平行線于點D,則△ABD的面積為( 。
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

同步練習冊答案