(本題滿分12分)
如圖,棱柱的側面是菱形,

(Ⅰ)證明:平面平面;
(Ⅱ)設上的點,且平面,求的值.

(Ⅰ)證明:,平面A1BC1平面平面A1BC1(Ⅱ)1

解析試題分析:(Ⅰ)因為側面BCC1B1是菱形,所以
又已知
所又平面A1BC1,又平面AB1C ,
所以平面平面A1BC1 .
(Ⅱ)設BC1交B1C于點E,連結DE,
則DE是平面A1BC1與平面B1CD的交線,
因為A1B//平面B1CD,所以A1B//DE.
又E是BC1的中點,所以D為A1C1的中點.
即A1D:DC1=1.
考點:面面垂直的判定及線面平行的性質(zhì)
點評:要證兩面垂直先要找線面垂直關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點.

(1)求證:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大;
(3)求點E到平面O1BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點,AB=AC=BE=2,CD=1

(Ⅰ)求證:DC∥平面ABE;
(Ⅱ)求證:AF⊥平面BCDE;
(Ⅲ)求證:平面AFD⊥平面AFE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.

(1)二面角Q-BD-C的大。
(2)求二面角B-QD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.

(1)求證:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點,

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,的交點,平面,是側棱的中點,異面直線所成角的大小是60.

(Ⅰ)求證:直線平面
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點.AC,BD交于O點.
(1)二面角Q-BD-C的大。
(2求二面角B-QD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖所示,正方形和矩形所在平面相互垂直,的中點. 
(1)求證:
(2)若直線與平面成45o角,求異面直線所成角的余弦值.

查看答案和解析>>

同步練習冊答案