如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)O是BD中點(diǎn).
(Ⅰ)求證:平面BDD1B1⊥平面C1OC;
(Ⅱ)求二面角C1-BD-C的正切值.
(Ⅰ)證明:在正方體ABCD-A1B1C1D1中,點(diǎn)O是BD中點(diǎn),
∵BC1=DC1,BC=DC,
∴C1O⊥BD,CO⊥BD-------------------(2分)
∵C1O∩CO=O,C1O?平面C1OC,CO?平面C1OC,
∴BD⊥平面C1OC------------------(5分)
∵BD?平面BDD1B1,∴平面BDD1B1⊥平面C1OC.--------------(7分)
(Ⅱ)由(Ⅰ)可知∠C1OC是二面角C1-BD-C的平面角---------------(11分)
C1
C=1,OC=
2
2

∴在Rt△C1OC中,tan∠C1OC=
C1C
OC
=
2

故二面角C1-BD-C的正切值為
2
.---------------(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體中,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面;
(3)求直線BE與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正四棱錐相鄰二側(cè)面形成的二面角為θ,則θ的取值范圍是( 。
A.(0,
π
2
B.(
π
3
π
2
C.(
π
4
,
π
3
D.(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1,AB=2,點(diǎn)E在棱AB上.
(1)證明:D1E⊥A1D;
(2)當(dāng)E點(diǎn)為線段AB的中點(diǎn)時(shí),求異面直線D1E與AC所成角的余弦值;
(3)試問(wèn)E點(diǎn)在何處時(shí),平面D1EC與平面AA1D1D所成二面角的平面角的余弦值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知
u
=(-2,2,5)
,
v
=(6,-4,4)
,
u
,
v
分別是平面α,β的法向量,則平面α,β的位置關(guān)系式( 。
A.平行B.垂直
C.所成的二面角為銳角D.所成的二面角為鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,直線PA⊥平面ABC,且∠ABC=90°,又點(diǎn)Q,M,N分別是線段PB,AB,BC的中點(diǎn),且點(diǎn)K是線段MN上的動(dòng)點(diǎn).
(Ⅰ)證明:直線QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值為
3
9
,試求MK的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EFBC,AE=x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖).
(1)當(dāng)x=2時(shí),求證:BD⊥EG;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:正△ABC與Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求證:AB⊥CD;
(2)求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點(diǎn).
(I)求證:A1B平面AEC1;
(II)若棱AA1上存在一點(diǎn)M,滿足B1M⊥C1E,求AM的長(zhǎng);
(Ⅲ)求平面AEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案