已知是函數(shù)的導函數(shù),且的圖像如圖所示,

函數(shù)的圖像可能是 (   )


 

B
解:根據(jù)導數(shù)的幾何意義可知,原函數(shù)先減后增再減,并且在x=0,x=2,分別取得極小值和極大值,因此選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處的切線斜率為零.
(Ⅰ)求的值;
(Ⅱ)求證:在定義域內恒成立;
(Ⅲ) 若函數(shù)有最小值,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調區(qū)間與極值點;
(2)若,方程有三個不同的根,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)有如下性質:如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(Ⅰ)如果函數(shù)>0)的值域為6,+∞,求的值;
(Ⅱ)研究函數(shù)(常數(shù)>0)在定義域內的單調性,并說明理由;
(Ⅲ)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結論).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
為實數(shù),函數(shù)
(1)求的單調區(qū)間
(2)求證:當時,有
(3)若在區(qū)間恰有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)= 的單調遞減區(qū)間是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)時取得極值.
(1)求a、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在R上的偶函數(shù)滿足,當時有,則不等式的解集為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處有極值。
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)的單調區(qū)間。

查看答案和解析>>

同步練習冊答案