(06年江西卷理)(12分)

已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值

(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間

(2)若對(duì)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。

解析:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b

由f¢()=,f¢(1)=3+2a+b=0得

a=,b=-2

f¢(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

x

(-¥,-

(-,1)

1

(1,+¥)

f¢(x)

0

0

f(x)

­

極大值

¯

極小值

­

所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥)

遞減區(qū)間是(-,1)

(2)f(x)=x3x2-2x+c,xÎ〔-1,2〕,當(dāng)x=-時(shí),f(x)=+c

為極大值,而f(2)=2+c,則f(2)=2+c為最大值。

要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c

解得c<-1或c>2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)已知集合M={x|},N={y|y=3x2+1,xÎR},則MÇN=(   )

A.Æ   B. {x|x³1}   C.{x|x>1}  D. {x| x³1或x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)已知復(fù)數(shù)z滿(mǎn)足(+3i)z=3i,則z=(   )

A.  B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)已知圓M:(x+cosq)2+(y-sinq)2=1,

直線(xiàn)l:y=kx,下面四個(gè)命題:

(A)對(duì)任意實(shí)數(shù)k與q,直線(xiàn)l和圓M相切;

(B)對(duì)任意實(shí)數(shù)k與q,直線(xiàn)l和圓M有公共點(diǎn);

(C)對(duì)任意實(shí)數(shù)q,必存在實(shí)數(shù)k,使得直線(xiàn)l與

和圓M相切

(D)對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)q,使得直線(xiàn)l與

和圓M相切

其中真命題的代號(hào)是______________(寫(xiě)出所有真命題的代號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年江西卷理)(12分)

如圖,已知△ABC是邊長(zhǎng)為1的正三角形,M、N分別是

邊AB、AC上的點(diǎn),線(xiàn)段MN經(jīng)過(guò)△ABC的中心G,

設(shè)ÐMGA=a(

(1)試將△AGM、△AGN的面積(分別記為S1與S2)表示為a的函數(shù)

(2)求y=的最大值與最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案