如圖中△ABC,若AB、BC在平面α內(nèi),判斷AC是否在平面α內(nèi).

答案:直線AC在平面內(nèi)
解析:

證明:∵AB在平面α內(nèi),

∴點(diǎn)一定在平面α內(nèi).

BC在平面α內(nèi),

C點(diǎn)一定在平面α內(nèi).

∵點(diǎn)A、點(diǎn)C都在直線AC上.

∴直線AC在平面內(nèi)(公理1)

判斷直線是否在平面內(nèi),依據(jù)公理1,只要直線上有兩點(diǎn)在平面內(nèi)即可.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,BC=2
3
,
AB
AC
=4,
AC
CB
=2
,雙曲線M是以B、C為焦點(diǎn)且過A點(diǎn).
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線M的方程;
(Ⅱ)設(shè)過點(diǎn)E(1,0)的直線l分別與雙曲線M的左、右支交于
F、G兩點(diǎn),直線l的斜率為k,求k的取值范圍.;
(Ⅲ)對(duì)于(Ⅱ)中的直線l,是否存在k≠0使|OF|=|OG|若有求出k的值,若沒有說明理由.(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)請(qǐng)閱讀如圖的算法流程圖若a=
2
2
(cos18°-sin18°)
  b=2cos228°-1  c=2sin16°cos16°請(qǐng)問輸出的結(jié)果應(yīng)該是
 
(填abc中的一個(gè)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、我們知道在平面幾何中,(如圖所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,則AB2=BD•BC.類比可得,若三棱錐A-BCD中,AD⊥面ABC,AO⊥面BCD,O為垂足,則
S△BCO2=S△BCA•S△BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]
A.(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的長(zhǎng).
B.(選修4-2:矩陣與變換)
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+
3
sinθ)=2
的距離為d,求d的最大值.
D.(選修4-5:不等式選講)
設(shè)a,b,c為正數(shù)且a+b+c=1,求證:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD•BC;類似地有命題:在三棱錐A-BCD中,AD⊥面ABC,若A點(diǎn)在BCD內(nèi)的射影為M,則有
S
2
△ABC
=S△BCMS△BCD
.上述命題是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案