【題目】已知函數(shù)f(x)= .
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性,并加以證明;
(3)寫出f(x)的值域.
【答案】解:(1)由題意可得:x∈R,所以定義域關(guān)于原點對稱.
又因為 f(x)= = =
所以f(﹣x)= = =﹣f(x),
所以f(x)是奇函數(shù).
(2)f(x)= = =1﹣ ,在R上是增函數(shù),
證明如下:任意取x1,x2,并且x1>x2∴
則 f(x1)﹣f(x2)= ﹣ = >0
所以f(x1)>f(x2),則f(x)在R上是增函數(shù).
(3)∵0< <2
∴f(x)=1﹣ ∈(﹣1,1),
所以f(x)的值域為(﹣1,1).
【解析】(1)判斷函數(shù)的奇偶性,需先判斷函數(shù)的定義域關(guān)于原點對稱;(2)根據(jù)函數(shù)單調(diào)性的定義可以證明函數(shù)的單調(diào)性;(3)利用不等式的基本性質(zhì)求得函數(shù)的值域.
【考點精析】關(guān)于本題考查的函數(shù)的值域和函數(shù)單調(diào)性的判斷方法,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的;單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),且f(2)=3,若對任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求實數(shù)a的取值范圍;
(2)若不等式f(x)≤(5﹣2a)t+1對任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax2+x﹣a.a(chǎn)∈R
(1)若不等式f(x)<b的解集為(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點處的切線與直線2x+y=0平行. (Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=xf(x)+4x的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={y|y=log x, },B={x|y= }.
(1)若a=2,求A∩B;
(2)若A∪B=B,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項和Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=f(x)滿足f(0)=3,且f(x+1)﹣f(x)=2x﹣1.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[﹣2,t](t>﹣2)上的最大值g(t);
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com