已知|
a
|=|
b
|=|
c
|=1,且
c
=
3
5
a
+
4
5
b

(1)求證:
a
b

(2)設(shè)
a
c
的夾角為θ,求cosθ的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:(1)利用數(shù)量積的性質(zhì)可得
a
b
=0即可證明;
(2)對(duì)
c
=
3
5
a
+
4
5
b
,兩邊作數(shù)量積
a
c
=
3
5
a
2
+
4
5
a
b
,化簡(jiǎn)即可.
解答: 解:(1)∵
c
=
3
5
a
+
4
5
b

c
2
=(
3
5
a
+
4
5
b
)2
=
9
25
a
2
+
16
25
b
2
+
24
25
a
b
,
∵|
a
|=|
b
|=|
c
|=1,
1=
9
25
+
16
25
+
24
25
a
b
,
a
b
=0.
a
b

(2)∵
c
=
3
5
a
+
4
5
b

a
c
=
3
5
a
2
+
4
5
a
b
,
∵|
a
|=|
b
|=|
c
|=1,
a
b
=0,
1×1×cosθ=
3
5
×12

cosθ=
3
5
點(diǎn)評(píng):本題考查了數(shù)量積的運(yùn)算法則及其性質(zhì)、向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx+(a-1)x(a∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[
1
e
,e]上的最小值;
(3)若關(guān)于x的方程f(x)=2x3-3x2在區(qū)間[
1
2
,2]上有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a2=4,且各項(xiàng)均滿(mǎn)足an+2=an+1+2an,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集合為R,集合A={x|x2+6x+8>0},集合B={x||2x+8|<12}.求∁UA∪B、∁U﹙A∪B﹚、∁U﹙A∩B﹚.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一動(dòng)點(diǎn)與焦點(diǎn)F1、F2的連線夾角為α,求sinα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={6,8,9},B={1,3,7,8,9},C={2,6,8,9},求出下列集合,并用Venn圖表示.
(1)A∪B,A∩C,B∩C;
(2)A∩B∩C,A∪B∪C;
(3)A∩(B∪C),(A∩B)∪(A∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),已知f(3)=2,f′(3)=-2,求
lim
x→3
2x-3f(x)
x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式sin(π+x)>0成立的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若1∈{x|2x-a<0},則實(shí)數(shù)a的取值集合是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案