設(shè)集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集一定是( 。
分析:先將方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集轉(zhuǎn)化為滿足a1x2+b1x+c1=0或a2x2+b2x+c2=0,也即集合M={x|a1x2+b1x+c1=0},集合N={a2x2+b2x+c2=0}的并集,從而得出方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集的表示法.
解答:解:方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集轉(zhuǎn)化為:
滿足a1x2+b1x+c1=0或a2x2+b2x+c2=0,
也即集合M={x|a1x2+b1x+c1=0},集合N={a2x2+b2x+c2=0}的并集,
從而得出方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集可用M、N表示為M∪N.
故選B.
點(diǎn)評(píng):本小題主要考查交、并、補(bǔ)集的混合運(yùn)算、方程式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對(duì)于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個(gè)數(shù)中至少有一個(gè)是偶數(shù)
(Ⅲ)設(shè)P⊆Sn,P中有m(m≥2)個(gè)元素,記P中所有兩元素間距離的平均值為
.
d
(P)

證明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,其前n項(xiàng)的和為Sn
(1)求證:數(shù)列{
Sn
n
}
為等差數(shù)列;
(2)設(shè){an}各項(xiàng)為正數(shù),a1=
1
15
,a1≠a2,若存在互異正整數(shù)m,n,p滿足:①m+p=2n;②
Sm
+
Sp
=2
Sn
.求集合{(x,y)|Sx•Sy=1,x∈N*,y∈N*}的元素個(gè)數(shù);
(3)設(shè)bn=aan(a為常數(shù),a>0,a≠1,a1≠a2),數(shù)列{bn}前n項(xiàng)和為Tn.對(duì)于正整數(shù)c,d,e,f,若c<d<e<f,且c+f=d+e,試比較(Tc-1+(Tf-1與(Td-1+(Te-1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)集合D中的任意兩數(shù)x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)任意實(shí)數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對(duì)任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:044

設(shè){an}是等差數(shù)列,d為公差,并且d≠0,它的前n項(xiàng)和為Sn.設(shè)集合M={(an,)|n∈N*},N={(x,y)|x2-y2=1,x、y∈R}.下列結(jié)論是否正確?如果正確,請(qǐng)給予證明;如果不正確,請(qǐng)舉一個(gè)反例說明.

(1)

以集合M中的元素為坐標(biāo)的點(diǎn)都在同一條直線上

(2)

M∩N中至多有一個(gè)元素

(3)

當(dāng)a1≠0時(shí),一定有M∩N≠Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)集合D中的任意兩數(shù)x1,x2恒有數(shù)學(xué)公式成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)任意實(shí)數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對(duì)任意滿足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案