已知函數(shù)f(x)=sinx(1+sinx)+cos2x
(1)求f(x)的最小正周期;
(2)求f(x)在[-
π
6
3
]上的最大值和最小值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)化簡(jiǎn)解析式化簡(jiǎn)可得f(x)=sinx+1,由周期公式即可求最小正周期T.
(2)由x∈[-
π
6
3
],可得sinx∈[-
1
2
,1],即可求f(x)在[-
π
6
,
3
]上的最大值和最小值.
解答: 解:(1)∵f(x)=sinx(1+sinx)+cos2x=sinx+sin2x+cos2x=sinx+1
∴T=
1
=2π

(2)∵x∈[-
π
6
3
],
∴sinx∈[-
1
2
,1],
∴f(x)=sinx+1∈[
1
2
,2],
∴f(x)在[-
π
6
3
]上的最大值為2,最小值為
1
2
點(diǎn)評(píng):本題主要考查了正弦函數(shù)的周期性,正弦函數(shù)的值域的解法,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=an+2n,n∈N+
(1)求證:a2是a1,a3的等比中項(xiàng);
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)M是棱AD的中點(diǎn),點(diǎn)P是線段CD1上的動(dòng)點(diǎn),點(diǎn)Q是線段CM上的動(dòng)點(diǎn),設(shè)直線PQ與平面ABCD所成的角為θ,則tanθ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC中,|
AB
|=5,
AB
AC
=24
BA
BC
夾角正切為18,求|
AC
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算:
.
ab
cd
.
=ad-bc,若方程
.
3
cosx
sinx
cosxcosx
.
=
3
2
,x∈(3,4),則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的一個(gè)點(diǎn),F(xiàn)為該橢圓的左焦點(diǎn),O為坐標(biāo)原點(diǎn),且△POF為正三角形.則該橢圓離心率為( 。
A、4-2
3
B、2-
3
C、
3
-1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x-a+log2x存在大于1的零點(diǎn),則a的取值范圍是(  )
A、[1,∞)
B、(1,+∞)
C、(0,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=kx+1(k≠0)與圓x2+(y-1)2=1相交于A,B兩點(diǎn),C點(diǎn)坐標(biāo)(3,0),若點(diǎn)M(a,b)滿足
MA
+
MB
+
MC
=
0
,則a+b=( 。
A、1
B、
5
2
C、
5
3
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-cosx
sinx
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案