已知橢圓的四個頂點(diǎn)恰好是一邊長為2,一內(nèi)角為的菱形的四個頂點(diǎn).
(I)求橢圓的方程;
(II)直線與橢圓交于,兩點(diǎn),且線段的垂直平分線經(jīng)過點(diǎn),求為原點(diǎn))面積的最大值.

(I)  ; (II)  .

解析試題分析:(I)由圖形的對稱性及橢圓的幾何性質(zhì),易得 ,進(jìn)而寫出方程; (II) ΔAOB的面積可以用 ,所以本題需要用弦長公式表示AB的長度,用點(diǎn)到之間的距離公式表示坐標(biāo)原點(diǎn)O到直線的距離,而這些都需要有直線的方程作為前提條件。所以本題應(yīng)先考慮設(shè)出直線AB的方程.此外,設(shè)方程的過程中,注意對于特殊情形的討論.
試題解析:
(I)因?yàn)闄E圓的四個頂點(diǎn)恰好是一邊長為2,
一內(nèi)角為的菱形的四個頂點(diǎn),
所以,橢圓的方程為                                     4分
(II)設(shè)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/b/vicep.png" style="vertical-align:middle;" />的垂直平分線通過點(diǎn), 顯然直線有斜率,
當(dāng)直線的斜率為時(shí),則的垂直平分線為軸,則
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/6/oyfqo.png" style="vertical-align:middle;" />,
所以,當(dāng)且僅當(dāng)時(shí),取得最大值為       7分
當(dāng)直線的斜率不為時(shí),則設(shè)的方程為
所以,代入得到
當(dāng),            即                         
方程有兩個不同的解
,                                       8分
所以
,化簡得到                     
代入,得到                                                    10分
又原點(diǎn)到直線的距離為

所以
化簡得到                                             12分        
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/9/1l1sm2.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),即時(shí),取得最大值
綜上,面積的最大值為
考點(diǎn):直線與圓錐曲線的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過作直 線的垂線交橢圓于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過作動直線與橢圓交于兩個不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

動點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記點(diǎn)的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓C: 的左、右焦點(diǎn)分別為,離心率為,點(diǎn)A是橢圓上任一點(diǎn),的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)任作一動直線l交橢圓C于兩點(diǎn),記,若在線段上取一點(diǎn)R,使得,則當(dāng)直線l轉(zhuǎn)動時(shí),點(diǎn)R在某一定直線上運(yùn)動,求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn)
線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(Ⅲ)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△的兩個頂點(diǎn)的坐標(biāo)分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱
點(diǎn)為(不重合) 試問:直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個動點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點(diǎn),滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)
(I)求橢圓C的離心率:
(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線

(I)
(II)

查看答案和解析>>

同步練習(xí)冊答案