平面四邊形ABCD中,則四邊形ABCD是(  )

A.矩形 B.正方形 C.菱形 D.梯形 

C

解析試題分析:,則,所以四邊形ABCD為平行四邊形,
,所以,對角線互相垂直的平行四邊形為菱形.故選C.
考點:平行向量與共線向量;數(shù)量積判斷兩個平面向量的垂直關系.
點評:本題考查平面向量與共線向量,以及數(shù)量積判斷兩個向量的垂直關系,需要通過對向量間的關系轉化為線段間的關系,然后即可判斷四邊形的形狀.屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

,則向量的夾角為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知平面向量,,則(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知若夾角為鈍角,則的取值范圍是(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知平面向量,且,則  (    )

A.-3  B.3 C.-1   D.1 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

是非零向量且滿足, ,則的夾角是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量,,若,則實數(shù)的值為( ).

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在四邊形ABCD中,若,且,則( )

A.ABCD是矩形 B.ABCD是正方形
C.ABCD是菱形 D.ABCD是平行四邊形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量,夾角為,且||=1,||=,則||等于(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案