設(shè)命題p:在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,不等式m2+5m-3≥|x1-x2|對(duì)任意實(shí)數(shù)a∈[-1,1]恒成立,若p∧q為真,試求實(shí)數(shù)m的取值范圍。
解:命題p:m≤1
命題q:
∴m2+5m-3≥3,
∴m2+5m-6≥0,
∴m≥1或m≤-6
p∧q為真,則p假q真
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)命題:①任意n∈N*,(n2-5n+5)2=1.
②已知x,y滿足條件
x≥0
y≤x
2x+y+k≤0
(k為常數(shù)),若z=x+3y的最大值為8,則k=-6.
③設(shè)全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則CU(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點(diǎn)的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內(nèi)一點(diǎn)P(P與A,B,C都不重合)滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為2.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題P:函數(shù)f(x)═x+
ax
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對(duì)任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù)y=x2-(a+1)x-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的定義域是R.如果命題p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•東營(yíng)一模)設(shè)命題P:函數(shù)f(x)=x+
a
x
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對(duì)任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案