已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn),若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有兩個(gè)交點(diǎn),則該雙曲線的離心率e的取值范圍是( 。
分析:依題意,雙曲線的一條漸近線的斜率k=
b
a
<tan60°,從而可求得其離心率e的取值范圍.
解答:解:∵過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有兩個(gè)交點(diǎn),
∴該雙曲線的一條漸近線y=
b
a
x的斜率k=
b
a
<tan60°=
3
,
b2
a2
<3,又b2=c2-a2,e=
c
a
,
c2-a2
a2
<3,
c2
a2
<4,即e2<4,又e>1,
∴1<e<2.
故選A.
點(diǎn)評:本題考查雙曲線的簡單性質(zhì),理解題意得到
b
a
<tan60°是關(guān)鍵,也是難點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(4,6),點(diǎn)P是雙曲線C:x2-
y215
=1
上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是雙曲線C的右焦點(diǎn),則PA+PF的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F是雙曲線C:x2-y2=2的左焦點(diǎn),直線l與雙曲線C交于A、B兩點(diǎn),
(1)若直線l過點(diǎn)P(1,2),且
OA
+
OB
=2
OP
,求直線l的方程.
(2)若直線l過點(diǎn)F且與雙曲線的左右兩支分別交于A、B兩點(diǎn),設(shè)
FB
FA
,當(dāng)λ∈[6,+∞)時(shí),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F是雙曲線x2-
y2
2
=1
的一個(gè)焦點(diǎn),過點(diǎn)F作直線l交雙曲線于兩點(diǎn)P、Q,若|PQ|=4,則這樣的直線l有且僅有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(A題)已知點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),直線l是圓在P點(diǎn)處的切線,動(dòng)拋物線以直線l為準(zhǔn)線且恒經(jīng)過定點(diǎn)A(-1,0)和B(1,0),則拋物線焦點(diǎn)F的軌跡為


  1. A.
  2. B.
    橢圓
  3. C.
    雙曲線
  4. D.
    拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)F是雙曲線C:x2-y2=2的左焦點(diǎn),直線l與雙曲線C交于A、B兩點(diǎn),
(1)若直線l過點(diǎn)P(1,2),且,求直線l的方程.
(2)若直線l過點(diǎn)F且與雙曲線的左右兩支分別交于A、B兩點(diǎn),設(shè),當(dāng)λ∈[6,+∞)時(shí),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案