15.函數(shù)y=${({\frac{1}{2}})^{2{x^2}-3x+1}}$的遞減區(qū)間為( 。
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.[$\frac{3}{4}$,+∞)

分析 令t=2x2-3x+1,則y=${(\frac{1}{2})}^{t}$,根據(jù)復(fù)合函數(shù)單調(diào)性“同增異減”的原則,結(jié)合二次函數(shù)的圖象和性質(zhì),可得答案.

解答 解:令t=2x2-3x+1,
則y=${(\frac{1}{2})}^{t}$,
∵y=${(\frac{1}{2})}^{t}$為減函數(shù),
故函數(shù)y=${({\frac{1}{2}})^{2{x^2}-3x+1}}$的遞減區(qū)間,
即t=2x2-3x+1的遞增區(qū)間,即[$\frac{3}{4}$,+∞),
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),復(fù)合函數(shù)的單調(diào)性,熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等比數(shù)列{an}滿足 a4•a6+2a5•a7+a6•a8=36,則a5+a7等于(  )
A.6B.±6C.5D.±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn 對(duì)一切整數(shù)n都成立.
(1)求a1,a2的值
(2)若a1>0,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足bn=lg$\frac{10{a}_{1}}{{a}_{n}}$,證明{bn}是等差數(shù)列;
(3)當(dāng)n為何值時(shí),Tn 最大?并求出Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某企業(yè)投資1千萬元用于一個(gè)高科技項(xiàng)目,每年可獲利25%.由于企業(yè)間競(jìng)爭(zhēng)激烈,每年底需要從利潤中取出資金200萬元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤增長率.經(jīng)過多少年后,該項(xiàng)目的資金可以達(dá)到4倍的目標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n(n∈n*),則$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(Ⅰ)確定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零點(diǎn),求a的取值范圍;
(Ⅲ)若對(duì)任意的t∈(-1,4),不等式f(2t-3)+f(t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題P:對(duì)m∈[-1,1],不等式a2-5a-3≥$\sqrt{{m}^{2}+8}$恒成立;命題q:不等式x2+ax+2<0有解,若p∨q、¬q都是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=$\sqrt{1-{x}^{2}}$-x+λ在[-1,1]上有兩個(gè)不同的零點(diǎn),則λ的取值范圍為( 。
A.[1,$\sqrt{2}$)B.(-$\sqrt{2}$,$\sqrt{2}$)C.(-$\sqrt{2}$,-1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=$\sqrt{3}$cosx+sinx,(x∈R)的圖象向右平移θ(θ>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對(duì)稱,若所有可能的θ的值從小到大依次構(gòu)成數(shù)列{θn},則$\sum_{n=1}^{10}{θ_n}$=( 。
A.$\frac{160π}{3}$B.$\frac{59π}{6}$C.$\frac{325π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案