【題目】如圖1所示,在直角梯形DCEF中,,,,,將四邊形ABEF沿AB邊折成圖2.
(1)求證:平面DEF;
(2)若,求平面DEF與平面EAC所成銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)連接BD,交AC于點(diǎn)O,取DE的中點(diǎn)為G,連接FG,OG,證明,再利用線面平行判定定理,即可證得平面DEF;
(2)以C為坐標(biāo)原點(diǎn),CB,CD,CE所在直線分別為x,y,z軸正方向建立空間直角坐標(biāo)系,求出平面DEF的法向量,平面EAC的法向量,求出兩個(gè)法向量夾角的余弦值,從而求得平面DEF與平面EAC所成銳二面角的余弦值。
(1)連接BD,交AC于點(diǎn)O,取DE的中點(diǎn)為G,連接FG,OG,
則,,
又因?yàn)?/span>,,
所以,且,
所以四邊形AOGF是平行四邊形,
所以,
又平面DEF,平面DEF,
所以平面DEF.
(2)因?yàn)?/span>,,,
所以,
所以,
因?yàn)?/span>,,,
所以,
所以,
因?yàn)?/span>,
所以平面ABCD,
所以CB,CD,CE兩兩垂直,
以C為坐標(biāo)原點(diǎn),CB,CD,CE所在直線分別為x,y,z軸正方向建立空間直角坐標(biāo)系,
則,,,,,
由,得,
設(shè)平面DEF的法向量為,
因?yàn)?/span>,,
所以由,,得,
令,得,,
所以,
設(shè)平面EAC的法向量,
因?yàn)?/span>,,
所以由,,得,
令,得,
設(shè)平面DEF與平面EAC所成的銳二面角為,
所以,
所以平面DEF與平面EAC所成的銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于在某個(gè)區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對(duì)于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個(gè)弱漸近函數(shù).
(1)若函數(shù)是函數(shù)在區(qū)間上的一個(gè)弱漸近函數(shù),求實(shí)數(shù)的取值范圍;
(2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);
(3)試問:函數(shù)與函數(shù)(其中為自然對(duì)數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請(qǐng)求出對(duì)應(yīng)的弱漸近函數(shù)應(yīng)滿足的條件;如不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意實(shí)數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).
(1)若,判斷是否為“可平衡”函數(shù),并說明理由;
(2)若,,當(dāng)變化時(shí),求證:與的“平衡”數(shù)對(duì)相同;
(3)若,且、均為函數(shù)的“平衡”數(shù)對(duì).當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上所有點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線,過點(diǎn)且傾斜角為的直線與曲線交于、兩點(diǎn).
(1)求曲線的參數(shù)方程和的取值范圍;
(2)求中點(diǎn)的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com