已知數(shù)列{an},其前n項和為Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2;
(Ⅱ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅲ)如果數(shù)列{bn}滿足an=log2bn,請證明數(shù)列{bn}是等比數(shù)列,并求其前n項和Tn
分析:(Ⅰ)先根據(jù)a1=S1求得a1,再根據(jù)a1+a2=S2求得a2
(Ⅱ)根據(jù)an=Sn-Sn-1,代入Sn=
3
2
n2+
7
2
n
即可求得an.進(jìn)而根據(jù)求得an-an-1為常數(shù)說明數(shù)列{an}是以5為首項,3為公差的等差數(shù)列.
(Ⅲ)把an代入
bn+1
bn
求得結(jié)果為常數(shù),可推知數(shù)列{bn}等比數(shù)列.根據(jù)b1=2a1求得首項,根據(jù)
bn+1
bn
=8求得公比,進(jìn)而根據(jù)等比數(shù)列的求和公式求得Tn
解答:解:(Ⅰ)a1=S1=5,a1+a2=S2=
3
2
×22+
7
2
×2=13
,
解得a2=8.
(Ⅱ)當(dāng)n≥2時,an=Sn-Sn-1=
3
2
[n2-(n-1)2]+
7
2
[n-(n-1)]
=
3
2
(2n-1)+
7
2
=3n+2

又a1=5滿足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴數(shù)列{an}是以5為首項,3為公差的等差數(shù)列.
(Ⅲ)由已知得bn=2an(n∈N*),
bn+1
bn
=
2an+1
2an
=2an+1-an=23=8
(n∈N*),
b1=2a1=32,
∴數(shù)列{bn}是以32為首項,8為公比的等比數(shù)列.
Tn=
32(1-8n)
1-8
=
32
7
(8n-1)
點評:本題主要考查了等比和等差數(shù)列的確定.關(guān)鍵是找到相鄰兩項的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、已知數(shù)列{an},其前n項和Sn=n2+n+1,則a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an},其前n項和Sn滿足Sn+1=2λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(1)求λ的值;
(2)求數(shù)列{an}的通項公式an;
(3)設(shè)數(shù)列{nan}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅱ)如果數(shù)列{bn}滿足an=log2bn,請證明數(shù)列{bn}是等比數(shù)列,并求其前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項和為Sn,點(n,Sn)在以F(0,
14
)為焦點,以坐標(biāo)原點為頂點的拋物線上,數(shù)列{bn}滿足bn=2 an
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an×bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案