分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性得出結(jié)論.
(2)利用正弦函數(shù)的單調(diào)性求得f(x)在$[{-\frac{π}{4},\frac{π}{4}}]$上的單調(diào)遞增區(qū)間.
解答 解:(1)∵函數(shù)$f(x)=cos(2x-\frac{π}{3})+2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+2cos($\frac{π}{4}$-x)•[-sin($\frac{π}{4}$-x)]
=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x-cos2x$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$,
∴f(x)的最小正周期$T=\frac{2π}{2}=π$.
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
再根據(jù)x∈$[{-\frac{π}{4},\frac{π}{4}}]$,可得f(x)在$[{-\frac{π}{4},\frac{π}{4}}]$上的單調(diào)遞增區(qū)間為[-$\frac{π}{6}$,$\frac{π}{4}$].
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+(y+4)2=2 | B. | (x+1)2+(y-4)2=2 | C. | (x-1)2+(y-4)2=2 | D. | (x+1)2+(y+4)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=-\frac{1}{32}$ | B. | B | C. | C | D. | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12cm2 | B. | 15πcm2 | C. | 24πcm2 | D. | 36πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com