8.函數(shù)f(x)的圖象如圖所示,則f(x)的解析式是( 。
A.f(x)=-|x|-1B.f(x)=|x-1|C.f(x)=-|x|+1D.f(x)=|x+1|

分析 根據(jù)圖象可知,函數(shù)f(x)的圖象是由兩條直線構(gòu)成,設(shè)出f(x),利用坐標(biāo)求解即可.

解答 解:根據(jù)圖象可知,函數(shù)f(x)的圖象是由兩條直線構(gòu)成,
設(shè)f(x)=kx+b,
當(dāng)x≥0時(shí),圖象過(0,1)和(1,0).
可得f(x)=-x+1,
當(dāng)x<0時(shí),圖象過(0,1)和(-1,0).
可得f(x)=x+1,
∴可得f(x)在R上的解析式為f(x)=-|x|+1.
故選C.

點(diǎn)評(píng) 本題考查了通過圖象求解函數(shù)解析式的問題.比較基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在四面體ABCD中,已知AB=2,BC=1,AD=3,CD=4且 AD⊥AB,BC⊥AB,則二面角C-AB-D的余弦值為-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和記為Sn,若a2=a+2(a為常數(shù)),且Sn是nan與na的等差中項(xiàng).
(1)求a1,a3,a4;
(2)猜想出an的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)y=$\frac{{\sqrt{2cosx-\sqrt{2}}}}{2sinx-1}$定義域是{x|2k$π-\frac{π}{4}$$≤x≤2kπ+\frac{π}{4}$,且x$≠2kπ+\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖是四棱錐的平面展開圖,其中四邊形ABCD為正方形,E,F(xiàn),G,H分別為PA,PD,PC,PB的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:
①平面EFGH∥平面ABCD;     
②平面PAD∥BC;      
③平面PCD∥AB;
④平面PAD∥平面PAB.
其中正確的有①②③.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.x2+y2-2x+4y=0的圓心坐標(biāo)是(1,-2),半徑是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線l?平面α,過空間任一點(diǎn)A且與l、α都成40°角的直線有且只有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某客運(yùn)公司用A,B兩種型號(hào)的車輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?營(yíng)運(yùn)成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=x3-ax2-x+6在(0,1)上單調(diào)遞減,則實(shí)數(shù)a取值范圍是(  )
A.a=1B.a≥1C.a≤1D.0<a<1

查看答案和解析>>

同步練習(xí)冊(cè)答案