【題目】2018年某市政府為了有效改善市區(qū)道路交通擁堵狀況出臺了一系列的改善措施.其中市區(qū)公交站點重新布局和建設作為重點項目.市政府相關部門根據(jù)交通擁堵情況制定了“市區(qū)公交站點重新布局方案”,現(xiàn)準備對該“方案”進行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該“方案”進行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖.相關規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分,內(nèi)認定為滿意,不低于分認定為非常滿意;③市民對公交站點布局的滿意率不低于即可啟用該“方案”;④用樣本的頻率代替概率.

(1)從該市市民中隨機抽取人,求恰有人非常滿意該“方案”的概率;并根據(jù)所學統(tǒng)計學知識判斷該市是否啟用該“方案”,說明理由;

(2)已知在評分低于分的被調(diào)查者中,老年人占,現(xiàn)從評分低于分的被調(diào)查者中按年齡分層抽取人以便了解不滿意的原因,并從中抽取人擔任群眾監(jiān)督員,記為群眾監(jiān)督員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學期望.

【答案】(1) 該市應啟用該方案(2)見解析

【解析】

(1)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是,用樣本的頻率代表概率,則從該市的全體市民中隨機抽取人,該人非常滿意“方案”的概率為,現(xiàn)從中抽取人恰有人非常滿意該“方案”的概率為,根據(jù)題意:分或以上被認定為滿意或非常滿意,在頻率分布直方圖中,評分在的頻率為,從而作出判斷;

(2)隨機變量的所有可能取值為,,,求出相應的概率值,即可得到隨機變量的分布列及其數(shù)學期望.

(1)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是

用樣本的頻率代表概率,則從該市的全體市民中隨機抽取人,

該人非常滿意“方案”的概率為

現(xiàn)從中抽取人恰有人非常滿意該“方案”的概率為:;

根據(jù)題意:分或以上被認定為滿意或非常滿意,在頻率分布直方圖中,

評分在的頻率為:

根據(jù)相關規(guī)則該市應啟用該方案.

(2)因為評分低于分的被調(diào)查者中,老年人占,

又從被調(diào)查者中按年齡分層抽取人,

所以這人中,老年人有人,非老年人有人,

隨機變量的所有可能取值為,,,

,

,

的分布列為

的數(shù)學期望 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下不等式中錯誤的是( 。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)||,實數(shù)m,n滿足0mn,且f(m)f(n),若f(x)[m2n]上的最大值為2,則________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為;兩人租車時間都不會超過四小時.

(1)求出甲、乙兩人所付租車費用相同的概率;

(2)求甲、乙兩人所付的租車費用之和為4元時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,恒成立,求實數(shù)的取值范圍;

(2)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復時間(單位:天)記錄如下:

A組:1011,12,13,14,1516;

B組:12,13,151617,14,.

假設所有病人的康復時間相互獨立,從A,B兩組隨機各選1人,A組選出的人記為甲,B組選出的人記為乙.

1)求甲的康復時間不少于14天的概率;

2)如果,求甲的康復時間比乙的康復時間長的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,為左右焦點,且與直線相切于點.

(1)求橢圓的方程及點的坐標;

(2)若直線與橢圓交于兩點,且于點(異于點),求證:線段長,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

(Ⅰ)討論直線與圓的公共點個數(shù);

(Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

(1)設相交于兩點,求;

(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

查看答案和解析>>

同步練習冊答案