如圖,設(shè)a、b是異面直線(xiàn),AB是a、b的公垂線(xiàn),過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).
【答案】分析:先連接AN,交平面α于點(diǎn)Q,連接PQ,由于b∥α,b?平面ABN,平面ABN∩α=OQ,根據(jù)線(xiàn)面平行的性質(zhì)定理可知b∥OQ,同理可證得a∥PQ,從而確定點(diǎn)P的位置.
解答:證明:連接AN,交平面α于點(diǎn)Q,連接PQ.
∵b∥α,b?平面ABN,平面ABN∩α=OQ,
∴b∥OQ.又O為AB的中點(diǎn),
∴Q為AN的中點(diǎn).∵a∥α,a?平面AMN且平面AMN∩α=PQ,
∴a∥PQ.∴P為MN的中點(diǎn).
點(diǎn)評(píng):本題主要考查了直線(xiàn)與平面平行的性質(zhì),同時(shí)考查了對(duì)基礎(chǔ)知識(shí)的綜合應(yīng)用能力和基本定理的掌握能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,設(shè)a、b是異面直線(xiàn),AB是a、b的公垂線(xiàn),過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)a、b是異面直線(xiàn),AB是a、b的公垂線(xiàn),過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)a、b是異面直線(xiàn),AB是a、b的公垂線(xiàn),過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):9.2 直線(xiàn)與平面平行(解析版) 題型:解答題

如圖,設(shè)a、b是異面直線(xiàn),AB是a、b的公垂線(xiàn),過(guò)AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案