設函數(shù)f (x)的定義域為M,具有性質P:對任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意xM,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤cd(1)及無窮多個正整數(shù)n,滿足d(n)=c.
(1)根據(jù)新定義可知,不存在函數(shù)f (x)=ax(a>0且a≠1)滿足性質P.
(2)運用反證法來證明正難則反的試題。也是證明不等式常用的方法之一。

試題分析:證明:(1)因f (x)=ax(a>0且a≠1),所以axax+2,即f (x)≠f (x+2).
2分
由題設以及算術平均與幾何平均不等式,得
f (x)+f (x+2)=axax+2>2=2 ax+1=2 f (x+1),
這與f (x)+f (x+2)≤2f (x+1)矛盾.
故不存在函數(shù)f (x)=ax(a>0且a≠1)滿足性質P.                         4分
(2)(ⅰ)由題設對任意f (x)+f (x+2)≤2f (x+1),所以
f(x+2)-f(x+1)≤f(x+1)-f(x).
于是對任意x∈N,d(x+1)≤d(x).                                     6分
下面用反證法證明:對任意x∈N,d(x)≥0.
假設存在某個非負整數(shù)k使d(k)<0,則由題設對任意x∈N,f(x)∈N,得d(x)∈Z,于是有d(k)≤-1.                                                    8分
由任意x∈N,d(x+1)≤d(x),所以-1≥d(k)≥d(k+1)≥d(k+2)≥ ≥d(kn)≥ .,這里n是自然數(shù). 于是有
d(kn)+d(k+(n-1))+d(k+(n-2))+ +d(k)≤(n+1) d(k)≤(n+1)×(-1).
d(kn)+d(k+(n-1))+d(k+(n-2))+ +d(k)=f (kn+1)-f (k),
所以f (kn+1)-f (k)≤-(n+1).
nf (k),得f (kf (k)+1)≤-f (k)-1+f (k)=-1,這與f (kf (k)+1)∈N矛盾.
因此,必有對任意x∈N,d(x)≥0.                                  12分
(ⅱ)由(ⅰ)可知 d(1)≥d(2)≥d(3)≥ ≥d(n)≥ ≥0.
d(1)=0時,則有d(1)=d(2)=d(3)= =d(n)=0,結論成立.
d(1)≠0時,對任意n∈N,有d(n) ∈N,且d(n) ∈[0, d(1)].
因為在區(qū)間[0, d(1)]上的自然數(shù)只有有限個,而落在此區(qū)間上的自然數(shù)d(n)有無數(shù)多個,所以,必存在自然數(shù)c∈[0, d(1)]和無窮多個正整數(shù)n,滿足d (n)=c.       16分
點評:關鍵是對于新定義的理解和準確的表示,屬于中檔題。審清題意,要仔細認真,避免誤解。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品在該售價的基礎上每上漲1元,則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.(14分)
(1)求的函數(shù)關系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),則=________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的反函數(shù)                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若函數(shù)都在區(qū)間上有定義,對任意,都有成立,則稱函數(shù)為區(qū)間上的“伙伴函數(shù)”
(1)若為區(qū)間上的“伙伴函數(shù)”,求的范圍。
(2)判斷是否為區(qū)間上的“伙伴函數(shù)”?
(3)若為區(qū)間上的“伙伴函數(shù)”,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在給定區(qū)間M上存在正數(shù)t,使得對于任意,有,且,則稱為M上的t級類增函數(shù)。給出4個命題
①函數(shù)上的3級類增函數(shù)
②函數(shù)上的1級類增函數(shù)
③若函數(shù)上的級類增函數(shù),則實數(shù)a的最小值為2
④設是定義在上的函數(shù),且滿足:1.對任意,恒有;2.對任意,恒有;3. 對任意,,若函數(shù)上的t級類增函數(shù),則實數(shù)t的取值范圍為。
以上命題中為真命題的是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給右圖的容器甲注水,下面圖像中哪一個圖像可以大致刻畫容器中水的高度與時間的函數(shù)關系:(   )。

     
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于在區(qū)間上有意義的兩個函數(shù),如果對于任意的,都有,則稱在區(qū)間上是接近的兩個函數(shù),否則稱它們在上是非接近的兩個函數(shù)。現(xiàn)有兩個函數(shù),,且都有意義.
(1)求的取值范圍;
(2)討論在區(qū)間上是否是接近的兩個函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的極值;
(2)若上恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案