已知拋物線C的頂點在原點,焦點為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點P,使得過點P的直線交C于另一點Q,滿足PF⊥QF,且PQ與C在點P處的切線垂直?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】分析:(Ⅰ)設拋物線C的方程是x2=ay,根據(jù)焦點為F的坐標求得a,進而可得拋物線的方程.
(Ⅱ)設P(x1,y1),Q(x2,y2),進而可得拋物線C在點P處的切線方程和直線PQ的方程,代入拋物線方程根據(jù)韋達定理,可求得x1+x2和x1x2的表達式,根據(jù)×求得y1=4及點P的坐標.
解答:解:(Ⅰ)設拋物線C的方程是x2=ay,
,
即a=4.
故所求拋物線C的方程為x2=4y.
(Ⅱ)解:設P(x1,y1),Q(x2,y2),
則拋物線C在點P處的切線方程是,
直線PQ的方程是
將上式代入拋物線C的方程,得,
故x1+x2=,x1x2=-8-4y1,
所以x2=-x1,y2=+y1+4.
=(x1,y1-1),=(x2,y2-1),×=x1x2+(y1-1)(y2-1)
=x1x2+y1y2-(y1+y2)+1
=-4(2+y1)+y1+y1+4)-(+2y1+4)+1
=y12-2y1--7
=(y12+2y1+1)-4(+y1+2)
=(y1+1)2-
==0,
故y1=4,此時,點P的坐標是(±4,4).
經(jīng)檢驗,符合題意.
所以,滿足條件的點P存在,其坐標為P(±4,4).
點評:本題主要考查拋物線的標準方程以及拋物線與直線的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線C的頂點在原點,焦點為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點P,使得過點P的直線交C于另一點Q,滿足PF⊥QF,且PQ與C在點P處的切線垂直?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•溫州一模)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(I)求t的值;
(II)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在原點,焦點為F(
1
2
,0)
.(1)求拋物線C的方程; (2)已知直線y=k(x+
1
2
)
與拋物線C交于A、B 兩點,且|FA|=2|FB|,求k 的值; (3)設點P 是拋物線C上的動點,點R、N 在y 軸上,圓(x-1)2+y2=1 內切于△PRN,求△PRN 的面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在坐標原點,焦點F(1,0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過拋物線C的焦點F作與x軸不垂直的任意直線l交拋物線于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB||FM|
為定值,且定值是2”.判斷它是真命題還是假命題,并說明理;
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于拋物線的一般性命題(注,不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點在坐標原點,以坐標軸為對稱軸,且焦點F(2,0).
(1)求拋物線C的標準方程;
(2)直線l過焦點F與拋物線C相交與M,N兩點,且|MN|=16,求直線l的傾斜角.

查看答案和解析>>

同步練習冊答案