如圖,在矩形
中,
分別為四邊的中點,且都在坐標軸上,設(shè)
,
.
(Ⅰ)求直線
與
的交點
的軌跡
的方程;
(Ⅱ)過圓
上一點
作圓的切線與軌跡
交于
兩點,若
,試求出
的值.
(1)
(2)
試題分析:解:(I)設(shè)
,由已知得
,
則直線
的方程為
,直線
的方程為
, 4分
消去
即得
的軌跡
的方程為
. 6分
(II)方法一:由已知得
,又
,則
, 8分
設(shè)直線
代入
得
,
設(shè)
,
則
.…10分
由
得
,
即
,
則
, 12分
又
到直線
的距離為
,故
.
經(jīng)檢驗當直線
的斜率不存在時也滿足. 14分
方法二:設(shè)
,則
,且可得直線
的方程為
…10分
代入
得
,
由
得
,即
,…12分
則
,故
. 14分
點評:主要是考查了直線與橢圓的位置關(guān)系的運用,運用代數(shù)的方法來解決幾何問題,屬于中檔題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,右準線為
,離心率為
.若直線
與橢圓
交于不同的兩點
、
,以線段
為直徑作圓
.
(1)求橢圓
的標準方程;
(2)若圓
與
軸相切,求圓
被直線
截得的線段長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
與曲線
的交點為
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)AB是橢圓
的長軸,點C在
上,且
,若AB=4,
,則
的兩個焦點之間的距離為________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓的方程為
,過點
作圓的兩條切線,切點分別為
、
,直線
恰好經(jīng)過橢圓
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)
是橢圓
(
垂直于
軸的一條弦,
所在直線的方程為
且
是橢圓上異于
、
的任意一點,直線
、
分別交定直線
于兩點
、
,求證
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點P(4, 4),圓C:
與橢圓E:
有一個公共點A(3,1),F(xiàn)
1、F
2分別是橢圓的左、右焦點,直線PF
1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個動點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左焦點為F,右頂點為A,以FA為直徑的圓經(jīng)過橢圓的上頂點,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的右焦點F
2作傾斜角為
弦AB,則|AB︳為( )
查看答案和解析>>