精英家教網 > 高中數學 > 題目詳情
已知集合A={x|-1≤x≤1},B={x|
x
x-1
≤0}
,則A∩B等于( 。
分析:集合A和集合B的公式元素構成A∩B,由此利用集合A={x|-1≤x≤1},B={x|
x
x-1
≤0}
={x|0≤x<1},能求出A∩B.
解答:解:∵集合A={x|-1≤x≤1},
B={x|
x
x-1
≤0}
={x|0≤x<1},
∴A∩B={x|0≤x<1}
=[0,1).
故選C.
點評:本題考查集合的交集及其運算,是基礎題.解題時要認真審題,仔細解答,注意分式不等式的解法的靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案