【題目】某商人投資81萬元建一間工作室,第一年裝修費為1萬元,以后每年增加2萬元,把工作室出租,每年收入租金30萬元.

(1)若扣除投資和各種裝修費,則從第幾年開始獲取純利潤?

(2)若干年后該商人為了投資其他項目,對該工作室有兩種處理方案:年平均利潤最大時,以46萬元出售該工作室;純利潤總和最大時,以10萬元出售該工作室.問該商人會選擇哪種方案?

【答案】1)從第4年開始獲取純利潤。

2)兩種方案獲利一樣多,而方案(1)時間比較短,所以選擇方案(1)。

【解析】試題分析:(1)設第n年獲取利潤為y萬元,n年共收入租金30n萬元.付出裝修費共,付出投資81萬元,由此可知利潤y=30n-81+n2),由y0能求出從第幾年開始獲取純利潤.

2純利潤總和最大時,以10萬元出售,利用二次函數(shù)的性質(zhì)求出最大利潤,方案利用基本不等式進行求解,當兩種方案獲利一樣多,就看時間哪個方案短就選擇哪個..

1)設第年獲取利潤為萬元。………………1

年共收租金30萬元,付出裝修費構(gòu)成一個以1為首項,2為公差的等差數(shù)列,

…………………2

因此利潤……………4

解得……………5

所以從第4年開始獲取純利潤。………………6

2)年平均利潤………………8

………………9

(當且僅當)所以9年后共獲利潤:154萬元。……………10

利潤

所以15年后共獲利潤:144+10=154萬元……………………11

兩種方案獲利一樣多,而方案(1)時間比較短,所以選擇方案(1)。…………………12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n項和,求證 <2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABADADBC,AD=6,BC=2AB=4,E,F分別在BCAD上,EFAB.現(xiàn)將四邊形ABCD沿EF折起,使平面ABEF⊥平面EFDC.

(Ⅰ)若BE=1,是否在折疊后的線段AD上存在一點P,且,使CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;

求三棱錐ACDF的體積的最大值,并求出此時二面角EACF的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z在復平面內(nèi)對應的點在第四象限,且z是方程x2﹣4x+5=0的根.
(1)求復數(shù)z;
(2)復數(shù)w=a﹣ (a∈R)滿足|w﹣z|<2 ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+a+1.
(1)當a=1時,求函數(shù)在區(qū)間[﹣2,3]上的值域;
(2)函數(shù)f(x)在[﹣5,5]上單調(diào),求實數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[0,2]上的最小值g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)aln x(a0aR)

(1)a1,求函數(shù)f(x)的極值和單調(diào)區(qū)間;

(2)若在區(qū)間(0,e]上至少存在一點x0,使得f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2)有如下結(jié)論
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
當f(x)=lgx時,上述結(jié)論正確的序號為 . (注:把你認為正確的命題的序號都填上).

查看答案和解析>>

同步練習冊答案