分析 以$\frac{π}{4}$分界點(diǎn)進(jìn)行討論,確定函數(shù)的單調(diào)性,利用函數(shù)的圖形,畫出草圖進(jìn)行求解,即可得到結(jié)果
解答 解:∵當(dāng)x∈[0,$\frac{π}{2}$]時(shí),0<f(x)<1,f(x)為偶函數(shù),
當(dāng)x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$時(shí),(x-$\frac{π}{4}$)f'(x)<0,
∴x∈[0,$\frac{π}{4}$]時(shí),f(x)為單調(diào)增函數(shù);x∈[$\frac{π}{4}$,$\frac{π}{2}$]時(shí),f(x)為單調(diào)減函數(shù),
在同一坐標(biāo)系中作出y=cos2x和y=f(x)草圖象如下,
由圖知f(x)=cos2x在[-2π,2π]上的零點(diǎn)個(gè)數(shù)為8個(gè).
故答案為8.
點(diǎn)評 本題考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查函數(shù)的周期性與奇偶性,利用數(shù)形結(jié)合的思想來求解,會(huì)化難為易.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{13}-1}{2}$ | B. | $\frac{1+\sqrt{13}}{2}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{14}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com