若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:≤()•().當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.

 

見解析

【解析】

試題分析:利用排序原理,n個(gè)式子相加,可得得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn),兩邊除以n2,即可得到結(jié)論.

證明 不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.

則由排序原理得:

a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbn

a1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1

a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an﹣1b1+anb2

a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn﹣1.

將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)

≤(a1+a2+…+an)(b1+b2+…+bn)

上式兩邊除以n2,得:

等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年湘教版必修二 3.1 弧度制與任意角練習(xí)卷1(解析版) 題型:填空題

(5分)與610°角終邊相同的角表示為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年湘教版必修三 7.1 解析幾何初步練習(xí)卷(解析版) 題型:選擇題

(4分)直線2xcosα﹣y﹣3=0(α∈[,])的傾斜角的變化范圍是( )

A.[,] B.[,] C.[) D.[,]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修4-5 2.3平均值不等式練習(xí)卷(解析版) 題型:選擇題

設(shè)底部為等邊三角形的直棱柱的體積為V,那么其表面積最小時(shí),底面邊長(zhǎng)為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修4-5 2.3平均值不等式練習(xí)卷(解析版) 題型:選擇題

(2014•寶雞一模)定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D,使得=C,則稱函數(shù)f(x)在D上的均值為C.已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)=lgx在x∈[10,100]上的均值為( ).

A. B. C. D.10

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修4-5 1.4絕對(duì)值的三角不等式練習(xí)卷(解析版) 題型:填空題

(2006•杭州一模)已知命題p:|x﹣2|<a(a>0),命題q:|x2﹣4|<1,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修4-5 1.4絕對(duì)值的三角不等式練習(xí)卷(解析版) 題型:填空題

(2014•重慶模擬)不等式對(duì)一切非零實(shí)數(shù)x,y均成立,則實(shí)數(shù)a的范圍為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修4-5 1.3絕對(duì)值不等式的解法練習(xí)卷(解析版) 題型:選擇題

(2013•紅橋區(qū)二模)已知集合 M={x||x+2|+|x﹣1|≤5},N={x|a<x<6},且M∩N=(﹣1,b],則b﹣a=( )

A.﹣3 B.﹣1 C.3 D.7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教B版選修2-1 2.1曲線與方程練習(xí)卷(解析版) 題型:選擇題

(2014•貴州模擬)函數(shù)f(x)=x2(0<x<1)的圖象如圖所示,其在點(diǎn)M(t,f(t))處的切線為l,l與x軸和直線x=1分別交與點(diǎn)P、Q,點(diǎn)N(1,0),若△PQN的面積為S時(shí)點(diǎn)M恰好有兩個(gè),則S的取值范圍為( )

A.[) B.(,] C.() D.[,

 

查看答案和解析>>

同步練習(xí)冊(cè)答案