如圖,在長方體ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A-BB1D1D的體積為    cm3.
6
關鍵是求出四棱錐A-BB1D1D的高.
連接AC交BD于O,在長方體中,
∵AB=AD=3,∴BD=3且AC⊥BD.
又∵BB1⊥底面ABCD,∴BB1⊥AC.
又DB∩BB1=B,∴AC⊥平面BB1D1D,
∴AO為四棱錐A -BB1D1D的高且AO=BD=.
=BD×BB1=3×2=6,
=·AO=×6×=6(cm3).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,矩形ABCD中,AB=a,AD=b,過點D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角PACB的大小為60°.過P作PH⊥EF于H.

(1)求證:PH⊥平面ABC;
(2)若a+b=2,求四面體PABC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(1)證明:AD⊥C1E;
(2)當異面直線AC,C1E所成的角為60°時,求三棱錐C1A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將邊長為的正方形沿對角線折起,使,則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

底面直徑和高都是的圓柱的側面積為(   )
A.B.C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A、B、C、D在同一個球的球面上,ABBC,AC=2,若四面體ABCD體積的最大值為,則這個球的表面積為(  )
A.B.8π C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱錐A-BCD中,側棱AB,AC,AD兩兩垂直,且△ABC,△ACD,△ADB的面積分別為,,,則該三棱錐外接球的表面積為(  )
A.2πB.6πC.4πD.24π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

湖面上漂著一個小球,湖水結冰后將球取出,冰面上留下了一個半徑為6 cm,深2 cm的空穴,則該球表面積為(      )cm².
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三條側棱兩兩互相垂直且長都為的三棱錐的四個頂點全部在同一個球面上,則該球的表面積為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案