已知數(shù)列{an}的通項(xiàng)公式為an=3n-2(n∈N+),則a3+a6 +a9+a12+a15=( )
A. 120 B. 125 C. 130 D. 135
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)連線的斜率的積為定值.
(Ⅰ)試求動(dòng)點(diǎn)P的軌跡方程C.
(Ⅱ)設(shè)直線與曲線C交于M、N兩點(diǎn),當(dāng)|MN|=時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓為其右焦點(diǎn),過F垂直于x軸的直線與橢圓相交所得的弦長(zhǎng)為2
(I)求橢圓C的方程;
(II)設(shè)直線與橢圓C相交于A、B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,橢圓=1(a>b>0)的上,下兩個(gè)頂點(diǎn)為A,B,直線l:y=-2,點(diǎn)P是橢圓上異于點(diǎn)A,B的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)N,連接PB并延長(zhǎng)交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過點(diǎn)A(0,1).
(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn);如不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊過點(diǎn),則sin(2-)=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且
(2b+c)cosA+acosC =0
(I)求角A的大。
(II)求的最大值,并求取得最大值時(shí)角 B.C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
直線x=t、y=x將圓x2+y2 =4分成若干塊,現(xiàn)用5種不同的顏色給這若干塊涂色,且共邊的顏色不同,每塊只涂一色,共有260種涂法,則實(shí)數(shù)t的取值范圍是____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com