【題目】設(shè)m是實(shí)數(shù),f(x)=m﹣ (x∈R)
(1)若函數(shù)f(x)為奇函數(shù),求m的值;
(2)試用定義證明:對(duì)于任意m,f(x)在R上為單調(diào)遞增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k3x)+f(3x﹣9x﹣2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)
解:函數(shù)f(x)=m﹣ 為奇函數(shù),
可得f(﹣x)=m﹣ =m﹣ ,且f(﹣x)+f(x)=0,
∴2m﹣ =2m﹣2=0(注:通過(guò)f(0)=0求可以,但要驗(yàn)證)
∴m=1;
(2)
解:證明:設(shè)x1,x2∈R,x1<x2,
則f(x1)﹣f(x2)=(m﹣ )﹣(m﹣ )= ﹣ =
∵x1,x2∈R,x1<x2,
∴0<2 <2 ,即2 ﹣2 <0,
∴f(x1)﹣f(x2)<0即f(x1)<f(x2).
則f(x)在R上為增函數(shù).
(3)
解:由于f(x)為奇函數(shù)且在R上為增函數(shù),
由f(k3x)+f(3x﹣9x﹣2)<0得:f(k3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),
∴k3x<﹣3x+9x+2即k<﹣1+3x+ ,
由3x>0,可得y=﹣1+3x+ ≥﹣1+2 =2 ﹣1,
當(dāng)且僅當(dāng)3x= ,即x=log3 時(shí),取得最小值2 ﹣1,
則k<2 ﹣1.
故實(shí)數(shù)k的取值范圍是(﹣∞,2 ﹣1).
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=2ax﹣ +lnx在x=1與x= 處都取得極值. (Ⅰ) 求a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=x2﹣2mx+m,若對(duì)任意的x1∈[ ,2],總存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)對(duì)任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )??
C.f(0)>2f( )
D.f(0)> f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面與側(cè)面都是菱形, , .
(Ⅰ)求證: ;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,平面平面, , , .
(Ⅰ)若, ,求四面體的體積;
(Ⅱ)若二面角為,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在獨(dú)立完成課本上的例題:“求證: + <2 ”后,又進(jìn)行了探究,發(fā)現(xiàn)下面的不等式均成立. + <2
+ <2
+ <2
+ <2 ,
+ ≤2 .
(1)請(qǐng)根據(jù)上述不等式歸納出一個(gè)一般性的不等式;(用字母表示)
(2)請(qǐng)用合適的方法證明你寫(xiě)出的不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在[﹣1,1]的函數(shù)f(x)滿足下列兩個(gè)條件:①任意的x∈[﹣1,1],都有f(﹣x)=﹣f(x);②任意的m,n∈[0,1],當(dāng)m≠n,都有 <0,則不等式f(1﹣3x)<f(x﹣1)的解集是( )
A.[0, )
B.( , ]
C.[﹣1, )
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實(shí)數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com