已知實(shí)數(shù)x=m滿足不等式log3(1-
1x+2
)>0
,試判斷方程y2-2y+m2-3=0有無實(shí)根,并給出證明.
分析:根據(jù)對數(shù)函數(shù)的定義域求出x的范圍,判斷方程y2-2y+m2-3=0的判別式的符號,從而得到次方程的根的情況.
解答:證明:log3(1-
1
x+2
)>0等價于
1-
1
x+2
>0
1-
1
x+2
>1
,解得 x<-2.
方程y2-2y+m2-3=0的判別式△=4-4(m2-3)=4(4-m2),∵x=m<-2,∴m2>4,即4-m2<0,∴△<0.
∴方程y2-2y+m2-3=0無實(shí)根.
點(diǎn)評:本題考查對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),一元二次方程的根的分布,由x的范圍判斷方程y2-2y+m2-3=0的
判別式△的符號是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P={x|x2-8x-20≤0},Q={x||x-1|≤m},m∈R.
(1)若P∪Q=P,求實(shí)數(shù)m的取值范圍;
(2)是否存在實(shí)數(shù)m,使得方程|x-1|=m至少有一個解x滿足“x∈P”?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a1,a2,a3不全為零,
(i)則
a1a2+2a2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值為
 
;
(ii)設(shè)正數(shù)x,y滿足x+y=2,令
xa1a2+ya2a3
a
2
1
+
a
2
2
+
a
2
3
的最大值為M,則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx,(k≠0)且滿足f(x+1)•f(x)=x2+x,函數(shù)g(x)=ax,(a>0且a≠1).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為R上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請說明理由;
(Ⅲ)已知關(guān)于x的方程g(2x+1)=f(x+1)•f(x)恰有一實(shí)數(shù)解為x0,且x0∈(
1
4
1
2
)
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在D上的函數(shù)y=f(x)滿足條件:存在實(shí)數(shù)a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數(shù));
②對于D內(nèi)任意y0,當(dāng)y0∉[a,b],總有f(y0)<C.
我們將滿足上述兩條件的函數(shù)f(x)稱為“平頂型”函數(shù),稱C為“平頂高度”,稱b-a為“平頂寬度”.根據(jù)上述定義,解決下列問題:
(1)函數(shù)f(x)=-|x+2|-|x-3|是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數(shù),求出m,n的值.
(3)對于(2)中的函數(shù)f(x),若f(x)=kx在x∈[-2,+∞)上有兩個不相等的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求證:不論為任何實(shí)數(shù),方程總有兩個不相等的實(shí)數(shù)根;
(2)若方程的兩根為x1,x2,且滿足
1
x1
+
1
x2
=-
1
2
,求m的值.

查看答案和解析>>

同步練習(xí)冊答案