精英家教網 > 高中數學 > 題目詳情

以雙曲線的上焦點為圓心,與該雙曲線的漸近線相切的圓的方程為        .

解析試題分析:由題意知,,則,上焦點為圓心,而F到漸近線距離=,
所以圓為.
考點:雙曲線的標準方程、圓的標準方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

在平面直角坐標系中,拋物線上縱坐標為2的一點到焦點的距離為3,則拋物線的焦點坐標為     

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知A1,A2雙曲線的頂點,B為雙曲線C的虛軸一個端點.若△A1BA2是等邊三角形,則雙曲線的離心率e等于      

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知拋物線過點
(1)求拋物線的方程,并求其準線方程;
(2)過焦點且斜率為的直線與拋物線交于兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

在棱長為的正方體中,點是正方體棱上一點(不包括棱的端點),,
①若,則滿足條件的點的個數為________;
②若滿足的點的個數為,則的取值范圍是________

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知拋物線的焦點為,則________,
過點向其準線作垂線,記與拋物線的交點為,則_____.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知是橢圓上的點,則的取值范圍是               

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

在平面直角坐標系中,若中心在坐標原點的雙曲線過點,且它的一個頂點與拋物線的焦點重合,則該雙曲線的方程為               .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知雙曲線的中心在原點,焦點在x軸上,它的一條漸近線與x軸的夾角為α,且<α<,則雙曲線的離心率的取值范圍是________.

查看答案和解析>>

同步練習冊答案