(08年湖北卷理)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關系,并予以證明.
【標準答案】(1)證明:如圖,過點在平面內(nèi)作于,則
由平面側(cè)面,且平面側(cè)面,得平面。又平面,
所以。
因為三棱柱是直三棱柱,
則底面。
所以,又,從而側(cè)面。
又側(cè)面,故.
(2)解法1:連接,則由(1)知是直線與平面所成的角,
是二面角的平面角,即。
于是在中,在中,,
由,得,又所以。
解法2:由(1)知,以點為坐標原點,以、、所在的直線分軸、軸、軸,建立如圖所示的空間直角坐標系,設,
則,
于是,。
設平面的一個法向量為,則
由得
可取,于是與的夾角為銳角,則與互為余角。
所以,,
所以。
于是由,得,
即,又所以。
【試題解析】第(1)問證明線線垂直,一般先證線面垂直,再由線面垂直得線線垂直;第(2)問若用傳統(tǒng)方法一般來說要先作垂直,進而得直角三角形。若用向量方法,關鍵在求法向量。
【高考考點】本題主要考查直棱柱、直線與平面所成的角、二面角和線面關系等有關知識,同時考查空間想象能力和推理能力。
【易錯提醒】要牢記面面角,線面角的范圍,特別是用向量法求二面角的時候要注意所要求的角與向量夾角的關系。
【備考提示】立體幾何中的垂直、平行,角與距離是高中數(shù)學的重要內(nèi)容,應該熟練掌握。
科目:高中數(shù)學 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關于t的近似函數(shù)關系式為
V(t)=
(Ⅰ)該水庫的蓄求量小于50的時期稱為枯水期.以i-1<t<t表示第1月份(i=1,2,…,12),同一年內(nèi)哪幾個月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫的最大蓄水量(取e=2.7計算)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年湖北卷理)(本小題滿分13分)
如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,
∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線C的方程;
(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F.
若△OEF的面積不小于2,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關系,并予以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4).現(xiàn)從袋中任取一球.ξ表示所取球的標號.
(Ⅰ)求ξ的分布列,期望和方差;
(Ⅱ)若η=aξ-b,Eη=1,Dη=11,試求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com