【題目】20201月,某公司以問卷的形式調查影響員工積極性的六項關鍵指標:績效獎勵、排班制度、激勵措施、工作環(huán)境、人際關系、晉升渠道,在確定各項指標權重結果后,進而得到指標重要性分析象限圖(如圖).若客戶服務中心從中任意抽取不同的兩項進行分析,則這兩項來自影響稍弱區(qū)的概率為(

A.B.C.D.

【答案】A

【解析】

根據(jù)圖可知,來自影響稍弱區(qū)的指標有激勵措施、工作環(huán)境、人際關系三項,記為,其余三項記為,列舉出從中任選兩項的基本事件的總數(shù),再找出兩項來自影響稍弱區(qū)的基本事件的個數(shù),代入古典概型的概率公式求解.

由圖可知,來自影響稍弱區(qū)的指標有激勵措施、工作環(huán)境、人際關系三項,設為,其余三項設為,

則從中任選兩項的結果為,,,,,,,

,,,種結果,

這兩項來自影響稍弱區(qū)的結果為,種,

故概率.

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心點O后轉向東北方向(即).現(xiàn)準備修建一條城市高架道路L,LMO上設一出入口A,在ON上設一出入口B.假設高架道路LAB部分為直線段,且要求市中心OAB的距離為10km

1)求兩站點A,B之間距離的最小值;

2)公路MO段上距離市中心O30km處有一古建筑群C為保護古建筑群,設立一個以C為圓心,5km為半徑的圓形保護區(qū).則如何在古建筑群C和市中心O之間設計出入口A,才能使高架道路L及其延伸段不經(jīng)過保護區(qū)(不包括臨界狀態(tài))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)對a∈(0,1),是否存在實數(shù)λ,,使成立,若存在,求λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點,線段的中點為,且直線與直線的斜率之積為.若直線與直線交于點,與直線交于點,且點為直線上一點.

1)求的軌跡方程;

2)若為橢圓的上頂點,直線軸交點,記表示面積,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程和曲線的直角坐標方程;

2)若點P的坐標為,且曲線與曲線交于C,D兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程;

2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了進一步激發(fā)同學們的學習熱情,某班級建立了數(shù)學英語兩個學習興趣小組,兩組的人數(shù)如下表所示:

組別

性別

數(shù)學

英語

5

1

3

3

現(xiàn)采用分層抽樣的方法(層內采用簡單隨機抽樣)從兩組中共抽取3名同學進行測試.

1)求從數(shù)學組抽取的同學中至少有1名女同學的概率;

2)記ξ為抽取的3名同學中男同學的人數(shù),求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有A,B兩款車型,根據(jù)以這往這兩種租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:

1)填寫下表,并判斷是否有99%的把握認為出租車的使用壽命年數(shù)與汽車車型有關?

2)司機師傅小李準備在一輛開了4年的A型車和一輛開了4年的B型車中選擇,為了盡最大可能實現(xiàn)3年內(含3年)不換車,試通過計算說明,他應如何選擇.

參考公式:,其中na+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDC,ABCD,∠ABC90°,ESD中點.

1)證明:直線AE//平面SBC

2)點F為線段AS的中點,求二面角FCDS的大。

查看答案和解析>>

同步練習冊答案