精英家教網 > 高中數學 > 題目詳情
精英家教網如圖A.B是單位圓O上的點,且點B在第二象限. C是圓O與x軸正半軸的交點,A點的坐標為(
3
5
,
4
5
)
,△AOB為直角三角形.
(1)求sin∠COA;
(2)求BC的長度.
分析:(1)根據三角函數的定義可直接得到答案.
(2)可由兩角和的正、余弦定理先求出點B的坐標,再根據兩點間的距離公式可得答案.
解答:解:(1)因為A點的坐標為(
3
5
,
4
5
),根據三角函數的定義可知sin∠COA=
4
5

(2)因為三角形AOB為直角三角形,所以∠AOB=90°
sin∠COA=
4
5
,cos∠COA=
3
5

所以cos∠COB=cos(
π
2
+∠AOC)=-sin∠
AOC=-
4
5

sin∠BOC=sin(
π
2
+∠AOC
)=cos∠AOC=
3
5

解法1:|BC|2=|OC|2+|OB|2-2|OC||OB|cos∠BOC=
18
5

|BC|=
3
5
10

解法2:由定義知A(
3
5
,
4
5
)  B=(-
4
5
3
5

由兩點間的距離公式得|BC|=
90
25
=
18
5

|BC|=
3
5
10
點評:本題主要考查三角函數的定義以及余弦定理.這種題型是高考必考題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖A,B是單位圓O上的點,且B在第二象限. C是圓與x軸正半軸的交點,A點的坐標為(
3
5
,
4
5
)
,△AOB為正三角形.
(Ⅰ)求cos∠COB;
(Ⅱ)求|BC|2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖A、B是單位圓O上的點,且B在第二象限.C是圓與x軸正半軸的交點,A點的坐標為(
3
5
,
4
5
),△AOB為正三角形.
(Ⅰ)求sin∠COA;
(Ⅱ)求cos∠COB.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖A、B是單位圓O上的點,C是圓與x軸正半軸的交點,A點的坐標為(
3
5
,
4
5
)
,三角形AOB為正三角形.
(1)求sin∠COA;
(2)求|BC|2的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖A,B是單位圓O上的點,且A,B分別在第一,二象限.C是圓與x軸正半軸的交點,△AOB為正三角形.若A點的坐標為(
3
5
,
4
5
).記∠COA=α.
(Ⅰ)求
sin2α+sin2α
cos2α+cos2α
的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

同步練習冊答案