已知直線l1:4x-3y+8=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是(  )
A、
12
5
B、3
C、2
D、
37
16
分析:設(shè)出拋物線上一點(diǎn)P的坐標(biāo)為(a2,2a),利用點(diǎn)到直線的距離公式,求出P到直線l1距離d1=
1
5
(4a2-6a+8),P到直線l2距離d2=a2+1,得到d1+d2關(guān)于a的二次函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)即可算出d1+d2的最小值.
解答:解:設(shè)拋物線上的一點(diǎn)P的坐標(biāo)為(a2,2a),
則P到直線l1:4x-3y+8=0的距離d1=
|4a2-6a+8|
5
,
∵4a2-6a+8=4(a-
3
4
2+
23
4
>0,
∴d1=
|4a2-6a+8|
5
=
1
5
(4a2-6a+8)
∵P到直線l2:x=-1的距離d2=a2+1;
∴距離之和為d1+d2=
1
5
(4a2-6a+8)+a2+1=
9
5
a2-
6
5
a+
13
5
=
1
5
(3a-1)2+
12
5

當(dāng)3a=1時(shí)即a=
1
3
時(shí),P到直線l1和直線l2的距離之和達(dá)到最小值,這個(gè)最小值為
12
5

故選:A
點(diǎn)評(píng):本題給出拋物線y2=4x上一個(gè)動(dòng)點(diǎn)P,求點(diǎn)P到兩條定直線距離之和的最小值.著重考查了點(diǎn)到直線的距離公式、拋物線的簡單幾何性質(zhì)和二次函數(shù)的性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( 。
A、2
B、3
C、
11
5
D、
37
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( 。
A、2
B、3
C、
11
5
D、
37
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•通州區(qū)一模)已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1:4x+y=0,直線l2:x+y-1=0以及l(fā)2上一點(diǎn)P(3,-2).求有圓心在l1上且與直線l2相切于點(diǎn)P的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案