已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n

(Ⅰ)若f(x)=1,求cos(x+
π
3
)的值;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,求f(2A)的取值范圍.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:解三角形,平面向量及應(yīng)用
分析:(Ⅰ)利用向量的數(shù)量積公式求出f(x)的解析式,然后求值;
(Ⅱ)由正弦定理將邊角的混合等式化為角的等式,利用三角函數(shù)公式化簡求出角A的范圍,然后求三角函數(shù)值的范圍.
解答: 解:(Ⅰ)向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n
=
3
sin
x
4
cos
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
2
+
1
2
=sin(
x
2
+
π
6
)+
1
2
,
因?yàn)閒(x)=1,所以sin(
x
2
+
π
6
)=
1
2
,
所以cos(x+
π
3
)=1-2sin2
x
2
+
π
6
)=
1
2

(Ⅱ)因?yàn)椋?a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC
所以2sinAcosB-sinCcosB=sinBcosC
所以2sinAcosB=sin(B+C)=sinA,sinA≠0,
所以cosB=
1
2
,又0<B<
π
2
,所以B=
π
3
,
則A+C=
3
,即A=
3
-C,又0<C<
π
2

π
6
<A<
π
2
,得
π
3
<A+
π
6
3

所以
3
2
<sin(A+
π
6
)≤1,又f(2A)=sin(A+
π
6
+
1
2
,
所以f(2A)的取值范圍(
3
+1
2
,
3
2
].
點(diǎn)評:本題考查了向量的數(shù)量積運(yùn)算以及利用正弦定理以及化簡三角函數(shù)式、解三角形;角的范圍的確定是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從正方形的四個頂點(diǎn)及其中心這五個點(diǎn)中,任取兩個點(diǎn),則這兩個點(diǎn)的距離不大于該正方形邊長的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

春節(jié)過后購物旺季隨之轉(zhuǎn)向淡季,商家均采用各種促銷方法促銷,某商場規(guī)定:凡購物均可獲得一次抽獎機(jī)會,抽獎方法為:從編號1-6的相同小球中任意抽取一個小球記下編號后放回,若抽到編號為6的小球則再獲一次機(jī)會,最多抽取二次.
(1)求顧客恰有兩次抽獎機(jī)會的概率;
(2)若抽得小球編號之和大于10為中獎,求中獎概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)(1,
3
2
),它的左焦點(diǎn)為F(-c,0),直線l1:y=x-c與橢圓C將于A,B兩點(diǎn),△ABF的周長為a3
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點(diǎn)P是直線l2:y=x-3c上的一個動點(diǎn),經(jīng)過點(diǎn)P作橢圓C的兩條切線PM,PN,M,N分別為切點(diǎn),求證:直線MN過定點(diǎn),并求出此定點(diǎn)坐標(biāo).
(注:經(jīng)過橢圓:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)(x0,y0)的橢圓的切線方程為
x0x
a2
+
y0y
b2
=1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示程序框圖的算法,輸出的結(jié)果為( 。
A、log910
B、lg11
C、2
D、log310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3(x≤7)
ax-6(x>7)
若數(shù)列{an}滿足an=f(n)(n∈N+),且{an}是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是(  )
A、[
9
4
,3)
B、(
9
4
,3)
C、(2,3)
D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-(1+a)x-1
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a<1時,證明:對任意的x∈(0,+∞),有f(x)<-
lnx
x
-a(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x+y≤5
2x+y≤6
(x≥0,y≥0),則目標(biāo)函數(shù)k=6x+8y取最大值時點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場根據(jù)甲、乙兩種不同品牌的洗衣粉在周一至周五每天的銷量繪成如圖所示的莖葉圖,若兩種品牌銷量的平均數(shù)為
.
x
.
x
,方差為S2與S2,則( 。
A、
.
x
.
x
,s2<S2
B、
.
x
.
x
,S2<S2
C、
.
x
.
x
,S2>S2
D、
.
x
.
x
,S2>S2

查看答案和解析>>

同步練習(xí)冊答案