(本小題滿分12分)
已知函數(shù)的零點(diǎn)的集合為{0,1},且是f(x)的一個(gè)極值點(diǎn)。
(1)求的值;
(2)試討論過(guò)點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。
(1);(2)當(dāng)時(shí),,方程①有兩等根,此時(shí),過(guò)點(diǎn)與曲線相切的直線有兩條;
當(dāng)時(shí),,方程①無(wú)解,此時(shí)過(guò)點(diǎn)與曲線相切的直線僅有一條;
當(dāng)時(shí),,方程①有兩個(gè)不同的實(shí)根,此時(shí)過(guò)點(diǎn)與曲線相切的直線有三條.

試題分析:(Ⅰ)函數(shù)的零點(diǎn)的集合為,則方程 的解可以為,或.
.
①若,則.
當(dāng),或時(shí),,函數(shù)為增函數(shù);當(dāng),函數(shù)為減函數(shù);
,為函數(shù)的極值點(diǎn).與題意不符.
②若,則
當(dāng),或時(shí),,函數(shù)為增函數(shù);當(dāng),,函數(shù)為減函數(shù);
,為函數(shù)的極值點(diǎn).
綜上,函數(shù),即,
,故,∴               …6分
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與曲線切于點(diǎn)
由(Ⅰ)知,∴曲線在點(diǎn)處的切線方程為,
滿足此方程,故,又
,∴.
,或…①,關(guān)于的方程的判別式
當(dāng)時(shí),,方程①有兩等根,此時(shí),過(guò)點(diǎn)與曲線相切的直線有兩條;
當(dāng)時(shí),,方程①無(wú)解,此時(shí)過(guò)點(diǎn)與曲線相切的直線僅有一條;
當(dāng)時(shí),,方程①有兩個(gè)不同的實(shí)根,此時(shí)過(guò)點(diǎn)與曲線相切的直線有三條.                                         …12分
點(diǎn)評(píng):利用導(dǎo)數(shù)求曲線的切線方程,我們一定要分清是“在某點(diǎn)處的切線”還是“過(guò)某點(diǎn)的切線”。對(duì)于“在某點(diǎn)處的切線”的問(wèn)題,這一點(diǎn)就是切點(diǎn),直接根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程即可。對(duì)于“過(guò)某點(diǎn)的切線”問(wèn)題,我們一般要把切點(diǎn)坐標(biāo)設(shè)出來(lái)解決。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是R上的可導(dǎo)函數(shù),且滿足,對(duì)任意的正實(shí)數(shù),下列不等式恒成立的是
A.; B.;
C.;   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”應(yīng)對(duì)對(duì)稱中心.根據(jù)這一發(fā)現(xiàn),則函數(shù)的對(duì)稱中心為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在區(qū)間上的最大值是(   )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù).(
(1)若函數(shù)有三個(gè)零點(diǎn),且,,求函數(shù) 的單調(diào)區(qū)間;
(2)若,試問(wèn):導(dǎo)函數(shù)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說(shuō)明理由.
(3)在(Ⅱ)的條件下,若導(dǎo)函數(shù)的兩個(gè)零點(diǎn)之間的距離不小于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義在上的函數(shù),對(duì)任意均有,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)若a>0,求函數(shù)的最小值;
(2)若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案