設(shè)F1、F2為橢圓y2=1的兩個焦點,P在橢圓上,當(dāng)△F1PF2面積為1時,·的值為(    )

A.0                     B.1                C.2                    D.

A

解析:不妨設(shè)P(x0,y0)在第一象限,則|F1F2|·y0=1又c=,故y0=,x0=.又F1(-,0),F(xiàn)2,0),故=(--,-),=(-,-),∴·=(+)(-)+?(-)2=-3+=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓
x2
16
+
y2
12
=1,點P為其上一點,F(xiàn)1、F2為橢圓的焦點,Q為射線F1P延長線上一點,且|PQ|=|PF2|,設(shè)R為F2Q的中點.
(1)當(dāng)P點在橢圓上運動時,求R形成的軌跡方程;
(2)設(shè)點R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點,若∠AOB=90°時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以正方形ABCD的相對頂點A、C為焦點的橢圓,恰好過正方形四邊的中點,則該橢圓的離心率為
10
-
2
2
10
-
2
2
;設(shè)F1和F2為雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點,若F1,F(xiàn)2,P(0,2b)是正三角形的三個頂點,則雙曲線的離心率為
2
2
;經(jīng)過拋物線y=
1
4
x2
的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若y1+y2=5,則線段AB的長等于
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面問題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個焦點,點F1、F2到直線L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,點F1、F2到直線L:mx+ny+p=0(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
(3)試寫出一個能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們知道,直線與圓的位置關(guān)系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進行研究并完成下面的問題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個焦點,點F1、F2到直線l:
2
x-y
+
5
=0
的距離分別為d1、d2,試求d1•d2的值,并判斷直線l與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,點F1、F2到直線l:mx+ny+p=0(m、n不同時為零)的距離分別為d1、d2,且直線l與橢圓M相切,試求d1•d2的值.
(3)試寫出一個能判斷直線與橢圓的相交、相離位置關(guān)系的充要條件(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個定點,a為正常數(shù),且||PF1|-|PF2||=2a,則動點P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對任意實數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為它的一個焦點,則以PF為直徑的圓與以長軸為直徑的圓相切.
其中真命題的序號為
③④⑤
③④⑤
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案