【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為 .
【答案】b>a>c
【解析】解:∵定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實(shí)數(shù))為偶函數(shù),
∴m=0,f(x)=2|x|﹣1,
∴x∈(﹣∞,0)時(shí),f(x)是減函數(shù),x∈(0,+∞)時(shí),f(x)是增函數(shù),
∵﹣1<log0.52<log0.53<log0.51=0,
log25>log24=2,
∴a=f(log0.53)= ﹣1∈(0,1),
b=f(log25)= ﹣1=4,
c=f(2m)=2|0|﹣1=0,
∴a,b,c的大小關(guān)系為b>a>c.
所以答案是:b>a>c.
【考點(diǎn)精析】關(guān)于本題考查的對(duì)數(shù)值大小的比較,需要了解幾個(gè)重要的對(duì)數(shù)恒等式:,,;常用對(duì)數(shù):,即;自然對(duì)數(shù):,即(其中…)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市理論預(yù)測(cè)2007年到2011年人口總數(shù)與年份的關(guān)系如表所示
年份2007+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線性回歸方程;
(2)據(jù)此估計(jì)2012年該城市人口總數(shù).
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1到9這9個(gè)數(shù)字中任取3個(gè)偶數(shù)和3個(gè)奇數(shù),組成無(wú)重復(fù)數(shù)字的六位數(shù),
(1)有多少個(gè)偶數(shù)?
(2)若奇數(shù)排在一起且偶數(shù)排在一起,這樣的六位數(shù)有多少個(gè)?
(3)若三個(gè)偶數(shù)不能相鄰,這樣的六位數(shù)有多少個(gè)?
(4)若三個(gè)偶數(shù)從左到右的排練順序必須由大到小,這樣的六位數(shù)有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知6只小白鼠有1只被病毒感染,需要通過(guò)對(duì)其化驗(yàn)病毒來(lái)確定是否感染.下面是兩種化驗(yàn)方案:方案甲:逐個(gè)化驗(yàn),直到能確定感染為止.方案乙:將6只分為兩組,每組三個(gè),并將它們混合在一起化驗(yàn),若存在病毒,則表明感染在這三只當(dāng)中,然后逐個(gè)化驗(yàn),直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個(gè)進(jìn)行化驗(yàn).
(1)求依據(jù)方案乙所需化驗(yàn)恰好為2次的概率.
(2)首次化驗(yàn)化驗(yàn)費(fèi)為10元,第二次化驗(yàn)化驗(yàn)費(fèi)為8元,第三次及其以后每次化驗(yàn)費(fèi)都是6元,列出方案甲所需化驗(yàn)費(fèi)用的分布列,并估計(jì)用方案甲平均需要體驗(yàn)費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (x∈R).
(1)求函數(shù)f(x)的值域;
(2)①判斷函數(shù)f(x)的奇偶性;②用定義判斷函數(shù)f(x)的單調(diào)性;
(3)解不等式f(1﹣m)+f(1﹣m2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求證: ,并指出等號(hào)成立的條件;
(Ⅱ)求證:對(duì)任意實(shí)數(shù),總存在實(shí)數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,點(diǎn), 是橢圓上的動(dòng)點(diǎn).
(Ⅰ)若直線與橢圓相切,求點(diǎn)的坐標(biāo);
(Ⅱ)若在軸的右側(cè),以為底邊的等腰的頂點(diǎn)在軸上,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開(kāi)”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計(jì) | |
支持“生育二胎” | a= | c= | |
不支持“生育二胎” | b= | d= | |
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開(kāi)”政策的支持度有差異.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附表:K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.
(1)求證:BC∥EF;
(2)求三棱錐B﹣ADE的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com