求中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸且經(jīng)過點(diǎn),一條漸近線的傾斜角為的雙曲線方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知,直線, 動(dòng)點(diǎn)到的距離是它到定直線距離的倍. 設(shè)動(dòng)點(diǎn)的軌跡曲線為.
(1)求曲線的軌跡方程.
(2)設(shè)點(diǎn), 若直線為曲線的任意一條切線,且點(diǎn)、到的距離分別為,試判斷是否為常數(shù),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線是曲線的一條切線,.
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的橢圓C:的一個(gè)焦點(diǎn)為,為橢圓C上一點(diǎn),的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線,使得直線與橢圓C相交于A,B兩點(diǎn),且以線段AB為直徑的圓恰好經(jīng)過原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),過點(diǎn)的直線與拋物線交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓和圓:,過橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(ⅰ)若圓O過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否為定值?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線截拋物線C所得弦長(zhǎng)為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點(diǎn)的兩個(gè)動(dòng)點(diǎn),記若試求當(dāng)取得最小值時(shí)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com