【題目】已知某企業(yè)原有員工1000人,每人每年可為企業(yè)創(chuàng)利潤(rùn)15萬(wàn)元,為應(yīng)對(duì)國(guó)際金融危機(jī)給企業(yè)帶來(lái)的不利影響,該企業(yè)實(shí)施優(yōu)化重組,分流增效的策略,分流出一部分員工待崗為維護(hù)生產(chǎn)穩(wěn)定,該企業(yè)決定待崗人數(shù)不超過(guò)原有員工的2%,并且每年給每位待崗員工發(fā)放生活補(bǔ)貼1萬(wàn)元據(jù)評(píng)估,當(dāng)待崗員工人數(shù)不超過(guò)原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)萬(wàn)元;當(dāng)待崗員工人數(shù)超過(guò)原有員工14%時(shí),留崗員工每人每年可為企業(yè)多創(chuàng)利潤(rùn)18萬(wàn)元

1求企業(yè)年利潤(rùn)萬(wàn)元關(guān)于待崗員工人數(shù)的函數(shù)關(guān)系式

2為使企業(yè)年利潤(rùn)最大,應(yīng)安排多少員工待崗?

【答案】12

【解析】

試題分析:1,當(dāng)時(shí),用人數(shù)乘以利潤(rùn)再減去補(bǔ)貼,得出的表達(dá)式;當(dāng)時(shí),同樣用人數(shù)乘以利潤(rùn)再減去補(bǔ)貼,得出的表達(dá)式2當(dāng)時(shí),易知增在減,比較后得出本區(qū)間最大為當(dāng)時(shí),函數(shù)為減函數(shù),,所以最大為

試題解析:

,當(dāng)時(shí),

當(dāng)時(shí),,

………………6分

2當(dāng)時(shí),易知增在

即當(dāng)時(shí),………………10分

當(dāng)時(shí),函數(shù)為減函數(shù),

綜上所述,要使企業(yè)年利潤(rùn)最大,應(yīng)安排10名員工待崗………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別是,離心率,過(guò)點(diǎn)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)若直線過(guò)橢圓的右焦點(diǎn),且與軸不重合,交橢圓兩點(diǎn),過(guò)點(diǎn)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—1:幾何證明選講

如圖,圓周角BAC的平分線與圓交于點(diǎn)D,過(guò)點(diǎn)D的切線與弦AC的延長(zhǎng)線交于點(diǎn) EADBC于點(diǎn)F

)求證:BCDE;

)若D、E、C、F四點(diǎn)共圓,且,求BAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,函數(shù)

1寫(xiě)出的單調(diào)區(qū)間;

2上的最大值為,求的取值范圍;

3若對(duì)任意正實(shí)數(shù),不等式恒成立,求正實(shí)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類(lèi)比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖?( )

①各棱長(zhǎng)相等,同一頂點(diǎn)上的任意兩條棱的夾角都相等;

②各個(gè)面都是全等的正三角形,相鄰兩個(gè)面所成的二面角都相等;

③各個(gè)面都是全等的正三角形,同一頂點(diǎn)上的任意兩條棱的夾角都相等.

A. B. C. ①② D. .①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)為中心的海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)正北海里有一個(gè)雷達(dá)觀測(cè)站,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)北偏東且與點(diǎn)相距海里的位置,經(jīng)過(guò)分鐘又測(cè)得該船已行駛到點(diǎn)北偏東(其中且與點(diǎn)相距海里的位置.

(1)求該船的行駛速度(單位:海里/小時(shí));

(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)幾何體的三視圖如圖所示.

(1)求此幾何體的表面積;

(2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案