分析 由題意在△ADC中應(yīng)用余弦定理易得cos∠CAD,進(jìn)而由同角三角函數(shù)基本關(guān)系可得sin∠CAD和sin∠BAD,再由和差角公式可得sin∠CAB,在△ABC中由正弦定理可得BC.
解答 解:由題意在△ADC中,AD=1,CD=2,AC=$\sqrt{7}$,
∴由余弦定理可得cos∠CAD=$\frac{1+7-4}{2×1×\sqrt{7}}$=$\frac{2\sqrt{7}}{7}$,
∴sin∠CAD=$\frac{\sqrt{21}}{7}$,
同理由cos∠BAD=-$\frac{\sqrt{7}}{14}$,可得sin∠BAD=$\frac{3\sqrt{21}}{14}$,
∴sin∠CAB=sin(∠BAD-∠CAD)
=sin∠BADcos∠CAD-cos∠BADsin∠CAD=$\frac{\sqrt{3}}{2}$
在△ABC中由正弦定理可得BC=$\frac{\sqrt{7}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{21}}{6}}$=3
故答案為:3.
點(diǎn)評(píng) 本題考查三角形中的幾何運(yùn)算,涉及正余弦定理的綜合應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 30 | C. | 31 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {x|0<x≤2} | C. | {x|0<x≤1} | D. | {x|1≤x≤2,x∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com