若變量x,y滿足約束條件則z=x-2y的最大值為( )
A.4
B.3
C.2
D.1
【答案】分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=x-2y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.
解答:解:畫出可行域(如圖),z=x-2y⇒x-z,
由圖可知,
當直線l經(jīng)過點A(1,-1)時,
z最大,且最大值為zmax=1-2×(-1)=3.
故選B.
點評:本小題主要考查線性規(guī)劃知識、作圖、識圖能力及計算能力,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3≤2x+y≤9
6≤x-y≤9
則z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺一模)若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
則w=log3(2x+y)的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y 滿足約束條件
x+y≥0
x-y≥0
3x+y-4≤0
,則4x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺三模)已知向量
a
=(x-z,1),
b
=(2,y+z)
,且
a
b
,若變量x,y滿足約束條件
x≥-1
y≥x
3x+2y≤5
則z的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宣城模擬)若變量x,y滿足約束條件
2≤x+y≤4
1≤x-y≤2
,則z=2x+4y的最小值為( 。

查看答案和解析>>

同步練習冊答案