將甲、乙兩個(gè)球隨機(jī)放入編號(hào)為1,2,3的3個(gè)盒子中,每個(gè)盒子的放球數(shù)量不限,則在1,2號(hào)盒子中各有1個(gè)球的概率為     .

試題分析:甲、乙兩個(gè)球隨機(jī)放入編號(hào)為1,2,3的3個(gè)盒子中,每個(gè)球都有3種放法,故共有3×3=9種放法
在1,2號(hào)盒子中各有1個(gè)球,有2種放法
∴在1,2號(hào)盒子中各有1個(gè)球的概率為.
點(diǎn)評(píng):本題考查排列知識(shí),考查概率的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位為了參加上級(jí)組織的普及消防知識(shí)競賽,需要從兩名選手中選出一人參加.為此,設(shè)計(jì)了一個(gè)挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對(duì),2道題答錯(cuò);選手乙答對(duì)每題的概率都是,且各題答對(duì)與否互不影響.設(shè)選手甲、選手乙答對(duì)的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列,并求出E(ξ),E(η);
(2)求D(ξ),D(η).請(qǐng)你根據(jù)得到的數(shù)據(jù),建議該單位派哪個(gè)選手參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

盒內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球. 規(guī)定取出1個(gè)紅色球得1分,取出1個(gè)白色球得0分,取出1個(gè)黑色球得-1分 . 現(xiàn)從盒內(nèi)任取3個(gè)球
(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;
(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;
(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從1,2,3,4,5中任取2個(gè)不同的數(shù),設(shè)A表示事件“取到的2個(gè)數(shù)之和為偶數(shù)”,B  表示事件“取到的2 個(gè)數(shù)均為偶數(shù)”,則P(B|A)=(    )
A.         B.            C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一個(gè)袋子中裝有分別標(biāo)注1、2、3、4、5的5個(gè)形狀大小完全相同的小球,現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出小球標(biāo)注的數(shù)字之差的絕對(duì)值為2或4的概率是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量ξ的分布列分布例如表
ξ
0
1
2
P
0.2
0.6
0.2
則Dξ=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從老校區(qū)把教師接到新校區(qū).已知從新校區(qū)到老校區(qū)有兩條公路,汽車走一號(hào)公路堵車的概率為,不堵車的概率為;汽車走二號(hào)公路堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走一號(hào)公路,丙汽車由于其他原因走二號(hào)公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求走二號(hào)公路堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若甲以10發(fā)6中,乙以10發(fā)5中的命中率打靶,兩人各射擊一次,則他們都中靶的概率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

工商部門對(duì)甲、乙兩家食品加工企業(yè)的產(chǎn)品進(jìn)行深入檢查后,決定對(duì)甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進(jìn)一步的檢驗(yàn).檢驗(yàn)員從以上8種產(chǎn)品中每次抽取一種逐一不重復(fù)地進(jìn)行化驗(yàn)檢驗(yàn).
(1)求前3次檢驗(yàn)的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(2)記檢驗(yàn)到第一種甲企業(yè)的產(chǎn)品時(shí)所檢驗(yàn)的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案