(2012年高考浙江卷理科8)如圖,F1,F2分別是雙曲線C:(a,b>0)的左右焦點,B是虛軸的端點,直線F1B與C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸交于點M.若|MF2|=|F1F2|,則C的離心率是
A. B.
C. D.
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(浙江文))在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考浙江卷理科16)定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離.已知曲線C1:y=x 2+a到直線l:y=x的距離等于C2:x 2+(y+4) 2 =2到直線l:y=x的距離,則實數(shù)a=______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考浙江卷理科21) (本小題滿分15分)如圖,橢圓C:(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求ABP的面積取最大時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com