設(shè)函數(shù)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有2個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.
【答案】分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論m的取值,討論函數(shù)的單調(diào)性.
(Ⅱ)函數(shù)f(x)在區(qū)間(0,2)內(nèi)有2個(gè)極值點(diǎn),對(duì)應(yīng)f'(x)=0在區(qū)間(0,2)內(nèi)有兩個(gè)不等實(shí)根,然后利用根的分布去求實(shí)數(shù)m的取值范圍.
解答:解:(Ⅰ)f'(x)=x2+(m+1)x+1,…(2分)
①當(dāng)△≤0,即(m-1)2-4≤0,-1≤m≤3時(shí),
函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增;…(4分)
②當(dāng)△>0,即m<-1或m>3時(shí),
令f'(x)=0,解得,…(6分)
所以,函數(shù)f(x)在內(nèi)單調(diào)遞增;
內(nèi)單調(diào)遞減;
內(nèi)單調(diào)遞增.…(8分)
(Ⅱ)若f'(x)=0在區(qū)間(0,2)內(nèi)有兩個(gè)不等實(shí)根,
,解得.…(13分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,對(duì)應(yīng)參數(shù)問題,必須要對(duì)參數(shù)進(jìn)行討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a
-
1
2
,當(dāng)x∈[-
π
6
π
3
]
時(shí),函數(shù)f(x)的最大值與最小值的和為
1
2

(I)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(II)作出y=f(x)在x∈[0,π]上的圖象.(不要求書寫作圖過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2sin(2x+
π4
)+1,
(I)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(II)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的最大值
(III)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(sinα-1,1)
b
=(1,1-cosα)
,
a
b
=
1
5
,α∈(0,
π
2
).
(1)求sin2α及sinα,cosα的值;
(2)設(shè)函數(shù)f(x)=5cos(2x-α)+cos2x(x∈R),求f(x)的最小正周期和圖象的對(duì)稱中心坐標(biāo);
(3)求函數(shù)f(x)在區(qū)間[-
11π
24
,-
24
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函數(shù)f(x)的解析式,
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域和值域.
(3)解不等式xf(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•朝陽(yáng)區(qū)二模)設(shè)函數(shù)f(x)=2sinxcosx-cos(2x-
π
6
).
(Ⅰ)求函數(shù)f(x)的最小正周期; 
(Ⅱ)當(dāng)x∈[0,
3
]時(shí),求函數(shù)f(x)的最大值及取得最大值時(shí)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案